Radix cross Linux Toolchains

Toolchains for all supported by Radix cross Linux devices

80 Commits   2 Branches   13 Tags
     9         kx // layout.cc -- lay out output file sections for gold
     9         kx 
     9         kx // Copyright (C) 2006-2023 Free Software Foundation, Inc.
     9         kx // Written by Ian Lance Taylor <iant@google.com>.
     9         kx 
     9         kx // This file is part of gold.
     9         kx 
     9         kx // This program is free software; you can redistribute it and/or modify
     9         kx // it under the terms of the GNU General Public License as published by
     9         kx // the Free Software Foundation; either version 3 of the License, or
     9         kx // (at your option) any later version.
     9         kx 
     9         kx // This program is distributed in the hope that it will be useful,
     9         kx // but WITHOUT ANY WARRANTY; without even the implied warranty of
     9         kx // MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
     9         kx // GNU General Public License for more details.
     9         kx 
     9         kx // You should have received a copy of the GNU General Public License
     9         kx // along with this program; if not, write to the Free Software
     9         kx // Foundation, Inc., 51 Franklin Street - Fifth Floor, Boston,
     9         kx // MA 02110-1301, USA.
     9         kx 
     9         kx #include "gold.h"
     9         kx 
     9         kx #include <cerrno>
     9         kx #include <cstring>
     9         kx #include <algorithm>
     9         kx #include <iostream>
     9         kx #include <fstream>
     9         kx #include <utility>
     9         kx #include <fcntl.h>
     9         kx #include <fnmatch.h>
     9         kx #include <unistd.h>
     9         kx #include "libiberty.h"
     9         kx #include "md5.h"
     9         kx #include "sha1.h"
     9         kx #ifdef __MINGW32__
     9         kx #include <windows.h>
     9         kx #include <rpcdce.h>
     9         kx #endif
     9         kx #ifdef HAVE_JANSSON
     9         kx #include <jansson.h>
     9         kx #endif
     9         kx 
     9         kx #include "parameters.h"
     9         kx #include "options.h"
     9         kx #include "mapfile.h"
     9         kx #include "script.h"
     9         kx #include "script-sections.h"
     9         kx #include "output.h"
     9         kx #include "symtab.h"
     9         kx #include "dynobj.h"
     9         kx #include "ehframe.h"
     9         kx #include "gdb-index.h"
     9         kx #include "compressed_output.h"
     9         kx #include "reduced_debug_output.h"
     9         kx #include "object.h"
     9         kx #include "reloc.h"
     9         kx #include "descriptors.h"
     9         kx #include "plugin.h"
     9         kx #include "incremental.h"
     9         kx #include "layout.h"
     9         kx 
     9         kx namespace gold
     9         kx {
     9         kx 
     9         kx // Class Free_list.
     9         kx 
     9         kx // The total number of free lists used.
     9         kx unsigned int Free_list::num_lists = 0;
     9         kx // The total number of free list nodes used.
     9         kx unsigned int Free_list::num_nodes = 0;
     9         kx // The total number of calls to Free_list::remove.
     9         kx unsigned int Free_list::num_removes = 0;
     9         kx // The total number of nodes visited during calls to Free_list::remove.
     9         kx unsigned int Free_list::num_remove_visits = 0;
     9         kx // The total number of calls to Free_list::allocate.
     9         kx unsigned int Free_list::num_allocates = 0;
     9         kx // The total number of nodes visited during calls to Free_list::allocate.
     9         kx unsigned int Free_list::num_allocate_visits = 0;
     9         kx 
     9         kx // Initialize the free list.  Creates a single free list node that
     9         kx // describes the entire region of length LEN.  If EXTEND is true,
     9         kx // allocate() is allowed to extend the region beyond its initial
     9         kx // length.
     9         kx 
     9         kx void
     9         kx Free_list::init(off_t len, bool extend)
     9         kx {
     9         kx   this->list_.push_front(Free_list_node(0, len));
     9         kx   this->last_remove_ = this->list_.begin();
     9         kx   this->extend_ = extend;
     9         kx   this->length_ = len;
     9         kx   ++Free_list::num_lists;
     9         kx   ++Free_list::num_nodes;
     9         kx }
     9         kx 
     9         kx // Remove a chunk from the free list.  Because we start with a single
     9         kx // node that covers the entire section, and remove chunks from it one
     9         kx // at a time, we do not need to coalesce chunks or handle cases that
     9         kx // span more than one free node.  We expect to remove chunks from the
     9         kx // free list in order, and we expect to have only a few chunks of free
     9         kx // space left (corresponding to files that have changed since the last
     9         kx // incremental link), so a simple linear list should provide sufficient
     9         kx // performance.
     9         kx 
     9         kx void
     9         kx Free_list::remove(off_t start, off_t end)
     9         kx {
     9         kx   if (start == end)
     9         kx     return;
     9         kx   gold_assert(start < end);
     9         kx 
     9         kx   ++Free_list::num_removes;
     9         kx 
     9         kx   Iterator p = this->last_remove_;
     9         kx   if (p->start_ > start)
     9         kx     p = this->list_.begin();
     9         kx 
     9         kx   for (; p != this->list_.end(); ++p)
     9         kx     {
     9         kx       ++Free_list::num_remove_visits;
     9         kx       // Find a node that wholly contains the indicated region.
     9         kx       if (p->start_ <= start && p->end_ >= end)
     9         kx 	{
     9         kx 	  // Case 1: the indicated region spans the whole node.
     9         kx 	  // Add some fuzz to avoid creating tiny free chunks.
     9         kx 	  if (p->start_ + 3 >= start && p->end_ <= end + 3)
     9         kx 	    p = this->list_.erase(p);
     9         kx 	  // Case 2: remove a chunk from the start of the node.
     9         kx 	  else if (p->start_ + 3 >= start)
     9         kx 	    p->start_ = end;
     9         kx 	  // Case 3: remove a chunk from the end of the node.
     9         kx 	  else if (p->end_ <= end + 3)
     9         kx 	    p->end_ = start;
     9         kx 	  // Case 4: remove a chunk from the middle, and split
     9         kx 	  // the node into two.
     9         kx 	  else
     9         kx 	    {
     9         kx 	      Free_list_node newnode(p->start_, start);
     9         kx 	      p->start_ = end;
     9         kx 	      this->list_.insert(p, newnode);
     9         kx 	      ++Free_list::num_nodes;
     9         kx 	    }
     9         kx 	  this->last_remove_ = p;
     9         kx 	  return;
     9         kx 	}
     9         kx     }
     9         kx 
     9         kx   // Did not find a node containing the given chunk.  This could happen
     9         kx   // because a small chunk was already removed due to the fuzz.
     9         kx   gold_debug(DEBUG_INCREMENTAL,
     9         kx 	     "Free_list::remove(%d,%d) not found",
     9         kx 	     static_cast<int>(start), static_cast<int>(end));
     9         kx }
     9         kx 
     9         kx // Allocate a chunk of size LEN from the free list.  Returns -1ULL
     9         kx // if a sufficiently large chunk of free space is not found.
     9         kx // We use a simple first-fit algorithm.
     9         kx 
     9         kx off_t
     9         kx Free_list::allocate(off_t len, uint64_t align, off_t minoff)
     9         kx {
     9         kx   gold_debug(DEBUG_INCREMENTAL,
     9         kx 	     "Free_list::allocate(%08lx, %d, %08lx)",
     9         kx 	     static_cast<long>(len), static_cast<int>(align),
     9         kx 	     static_cast<long>(minoff));
     9         kx   if (len == 0)
     9         kx     return align_address(minoff, align);
     9         kx 
     9         kx   ++Free_list::num_allocates;
     9         kx 
     9         kx   // We usually want to drop free chunks smaller than 4 bytes.
     9         kx   // If we need to guarantee a minimum hole size, though, we need
     9         kx   // to keep track of all free chunks.
     9         kx   const int fuzz = this->min_hole_ > 0 ? 0 : 3;
     9         kx 
     9         kx   for (Iterator p = this->list_.begin(); p != this->list_.end(); ++p)
     9         kx     {
     9         kx       ++Free_list::num_allocate_visits;
     9         kx       off_t start = p->start_ > minoff ? p->start_ : minoff;
     9         kx       start = align_address(start, align);
     9         kx       off_t end = start + len;
     9         kx       if (end > p->end_ && p->end_ == this->length_ && this->extend_)
     9         kx 	{
     9         kx 	  this->length_ = end;
     9         kx 	  p->end_ = end;
     9         kx 	}
     9         kx       if (end == p->end_ || (end <= p->end_ - this->min_hole_))
     9         kx 	{
     9         kx 	  if (p->start_ + fuzz >= start && p->end_ <= end + fuzz)
     9         kx 	    this->list_.erase(p);
     9         kx 	  else if (p->start_ + fuzz >= start)
     9         kx 	    p->start_ = end;
     9         kx 	  else if (p->end_ <= end + fuzz)
     9         kx 	    p->end_ = start;
     9         kx 	  else
     9         kx 	    {
     9         kx 	      Free_list_node newnode(p->start_, start);
     9         kx 	      p->start_ = end;
     9         kx 	      this->list_.insert(p, newnode);
     9         kx 	      ++Free_list::num_nodes;
     9         kx 	    }
     9         kx 	  return start;
     9         kx 	}
     9         kx     }
     9         kx   if (this->extend_)
     9         kx     {
     9         kx       off_t start = align_address(this->length_, align);
     9         kx       this->length_ = start + len;
     9         kx       return start;
     9         kx     }
     9         kx   return -1;
     9         kx }
     9         kx 
     9         kx // Dump the free list (for debugging).
     9         kx void
     9         kx Free_list::dump()
     9         kx {
     9         kx   gold_info("Free list:\n     start      end   length\n");
     9         kx   for (Iterator p = this->list_.begin(); p != this->list_.end(); ++p)
     9         kx     gold_info("  %08lx %08lx %08lx", static_cast<long>(p->start_),
     9         kx 	      static_cast<long>(p->end_),
     9         kx 	      static_cast<long>(p->end_ - p->start_));
     9         kx }
     9         kx 
     9         kx // Print the statistics for the free lists.
     9         kx void
     9         kx Free_list::print_stats()
     9         kx {
     9         kx   fprintf(stderr, _("%s: total free lists: %u\n"),
     9         kx 	  program_name, Free_list::num_lists);
     9         kx   fprintf(stderr, _("%s: total free list nodes: %u\n"),
     9         kx 	  program_name, Free_list::num_nodes);
     9         kx   fprintf(stderr, _("%s: calls to Free_list::remove: %u\n"),
     9         kx 	  program_name, Free_list::num_removes);
     9         kx   fprintf(stderr, _("%s: nodes visited: %u\n"),
     9         kx 	  program_name, Free_list::num_remove_visits);
     9         kx   fprintf(stderr, _("%s: calls to Free_list::allocate: %u\n"),
     9         kx 	  program_name, Free_list::num_allocates);
     9         kx   fprintf(stderr, _("%s: nodes visited: %u\n"),
     9         kx 	  program_name, Free_list::num_allocate_visits);
     9         kx }
     9         kx 
     9         kx // A Hash_task computes the MD5 checksum of an array of char.
     9         kx 
     9         kx class Hash_task : public Task
     9         kx {
     9         kx  public:
     9         kx   Hash_task(Output_file* of,
     9         kx 	    size_t offset,
     9         kx 	    size_t size,
     9         kx 	    unsigned char* dst,
     9         kx 	    Task_token* final_blocker)
     9         kx     : of_(of), offset_(offset), size_(size), dst_(dst),
     9         kx       final_blocker_(final_blocker)
     9         kx   { }
     9         kx 
     9         kx   void
     9         kx   run(Workqueue*)
     9         kx   {
     9         kx     const unsigned char* iv =
     9         kx 	this->of_->get_input_view(this->offset_, this->size_);
     9         kx     md5_buffer(reinterpret_cast<const char*>(iv), this->size_, this->dst_);
     9         kx     this->of_->free_input_view(this->offset_, this->size_, iv);
     9         kx   }
     9         kx 
     9         kx   Task_token*
     9         kx   is_runnable()
     9         kx   { return NULL; }
     9         kx 
     9         kx   // Unblock FINAL_BLOCKER_ when done.
     9         kx   void
     9         kx   locks(Task_locker* tl)
     9         kx   { tl->add(this, this->final_blocker_); }
     9         kx 
     9         kx   std::string
     9         kx   get_name() const
     9         kx   { return "Hash_task"; }
     9         kx 
     9         kx  private:
     9         kx   Output_file* of_;
     9         kx   const size_t offset_;
     9         kx   const size_t size_;
     9         kx   unsigned char* const dst_;
     9         kx   Task_token* const final_blocker_;
     9         kx };
     9         kx 
     9         kx // Layout::Relaxation_debug_check methods.
     9         kx 
     9         kx // Check that sections and special data are in reset states.
     9         kx // We do not save states for Output_sections and special Output_data.
     9         kx // So we check that they have not assigned any addresses or offsets.
     9         kx // clean_up_after_relaxation simply resets their addresses and offsets.
     9         kx void
     9         kx Layout::Relaxation_debug_check::check_output_data_for_reset_values(
     9         kx     const Layout::Section_list& sections,
     9         kx     const Layout::Data_list& special_outputs,
     9         kx     const Layout::Data_list& relax_outputs)
     9         kx {
     9         kx   for(Layout::Section_list::const_iterator p = sections.begin();
     9         kx       p != sections.end();
     9         kx       ++p)
     9         kx     gold_assert((*p)->address_and_file_offset_have_reset_values());
     9         kx 
     9         kx   for(Layout::Data_list::const_iterator p = special_outputs.begin();
     9         kx       p != special_outputs.end();
     9         kx       ++p)
     9         kx     gold_assert((*p)->address_and_file_offset_have_reset_values());
     9         kx 
     9         kx   gold_assert(relax_outputs.empty());
     9         kx }
     9         kx 
     9         kx // Save information of SECTIONS for checking later.
     9         kx 
     9         kx void
     9         kx Layout::Relaxation_debug_check::read_sections(
     9         kx     const Layout::Section_list& sections)
     9         kx {
     9         kx   for(Layout::Section_list::const_iterator p = sections.begin();
     9         kx       p != sections.end();
     9         kx       ++p)
     9         kx     {
     9         kx       Output_section* os = *p;
     9         kx       Section_info info;
     9         kx       info.output_section = os;
     9         kx       info.address = os->is_address_valid() ? os->address() : 0;
     9         kx       info.data_size = os->is_data_size_valid() ? os->data_size() : -1;
     9         kx       info.offset = os->is_offset_valid()? os->offset() : -1 ;
     9         kx       this->section_infos_.push_back(info);
     9         kx     }
     9         kx }
     9         kx 
     9         kx // Verify SECTIONS using previously recorded information.
     9         kx 
     9         kx void
     9         kx Layout::Relaxation_debug_check::verify_sections(
     9         kx     const Layout::Section_list& sections)
     9         kx {
     9         kx   size_t i = 0;
     9         kx   for(Layout::Section_list::const_iterator p = sections.begin();
     9         kx       p != sections.end();
     9         kx       ++p, ++i)
     9         kx     {
     9         kx       Output_section* os = *p;
     9         kx       uint64_t address = os->is_address_valid() ? os->address() : 0;
     9         kx       off_t data_size = os->is_data_size_valid() ? os->data_size() : -1;
     9         kx       off_t offset = os->is_offset_valid()? os->offset() : -1 ;
     9         kx 
     9         kx       if (i >= this->section_infos_.size())
     9         kx 	{
     9         kx 	  gold_fatal("Section_info of %s missing.\n", os->name());
     9         kx 	}
     9         kx       const Section_info& info = this->section_infos_[i];
     9         kx       if (os != info.output_section)
     9         kx 	gold_fatal("Section order changed.  Expecting %s but see %s\n",
     9         kx 		   info.output_section->name(), os->name());
     9         kx       if (address != info.address
     9         kx 	  || data_size != info.data_size
     9         kx 	  || offset != info.offset)
     9         kx 	gold_fatal("Section %s changed.\n", os->name());
     9         kx     }
     9         kx }
     9         kx 
     9         kx // Layout_task_runner methods.
     9         kx 
     9         kx // Lay out the sections.  This is called after all the input objects
     9         kx // have been read.
     9         kx 
     9         kx void
     9         kx Layout_task_runner::run(Workqueue* workqueue, const Task* task)
     9         kx {
     9         kx   // See if any of the input definitions violate the One Definition Rule.
     9         kx   // TODO: if this is too slow, do this as a task, rather than inline.
     9         kx   this->symtab_->detect_odr_violations(task, this->options_.output_file_name());
     9         kx 
     9         kx   Layout* layout = this->layout_;
     9         kx   off_t file_size = layout->finalize(this->input_objects_,
     9         kx 				     this->symtab_,
     9         kx 				     this->target_,
     9         kx 				     task);
     9         kx 
     9         kx   // Now we know the final size of the output file and we know where
     9         kx   // each piece of information goes.
     9         kx 
     9         kx   if (this->mapfile_ != NULL)
     9         kx     {
     9         kx       this->mapfile_->print_discarded_sections(this->input_objects_);
     9         kx       layout->print_to_mapfile(this->mapfile_);
     9         kx     }
     9         kx 
     9         kx   Output_file* of;
     9         kx   if (layout->incremental_base() == NULL)
     9         kx     {
     9         kx       of = new Output_file(parameters->options().output_file_name());
     9         kx       if (this->options_.oformat_enum() != General_options::OBJECT_FORMAT_ELF)
     9         kx 	of->set_is_temporary();
     9         kx       of->open(file_size);
     9         kx     }
     9         kx   else
     9         kx     {
     9         kx       of = layout->incremental_base()->output_file();
     9         kx 
     9         kx       // Apply the incremental relocations for symbols whose values
     9         kx       // have changed.  We do this before we resize the file and start
     9         kx       // writing anything else to it, so that we can read the old
     9         kx       // incremental information from the file before (possibly)
     9         kx       // overwriting it.
     9         kx       if (parameters->incremental_update())
     9         kx 	layout->incremental_base()->apply_incremental_relocs(this->symtab_,
     9         kx 							     this->layout_,
     9         kx 							     of);
     9         kx 
     9         kx       of->resize(file_size);
     9         kx     }
     9         kx 
     9         kx   // Queue up the final set of tasks.
     9         kx   gold::queue_final_tasks(this->options_, this->input_objects_,
     9         kx 			  this->symtab_, layout, workqueue, of);
     9         kx }
     9         kx 
     9         kx // Layout methods.
     9         kx 
     9         kx Layout::Layout(int number_of_input_files, Script_options* script_options)
     9         kx   : number_of_input_files_(number_of_input_files),
     9         kx     script_options_(script_options),
     9         kx     namepool_(),
     9         kx     sympool_(),
     9         kx     dynpool_(),
     9         kx     signatures_(),
     9         kx     section_name_map_(),
     9         kx     segment_list_(),
     9         kx     section_list_(),
     9         kx     unattached_section_list_(),
     9         kx     special_output_list_(),
     9         kx     relax_output_list_(),
     9         kx     section_headers_(NULL),
     9         kx     tls_segment_(NULL),
     9         kx     relro_segment_(NULL),
     9         kx     interp_segment_(NULL),
     9         kx     increase_relro_(0),
     9         kx     symtab_section_(NULL),
     9         kx     symtab_xindex_(NULL),
     9         kx     dynsym_section_(NULL),
     9         kx     dynsym_xindex_(NULL),
     9         kx     dynamic_section_(NULL),
     9         kx     dynamic_symbol_(NULL),
     9         kx     dynamic_data_(NULL),
     9         kx     eh_frame_section_(NULL),
     9         kx     eh_frame_data_(NULL),
     9         kx     added_eh_frame_data_(false),
     9         kx     eh_frame_hdr_section_(NULL),
     9         kx     gdb_index_data_(NULL),
     9         kx     build_id_note_(NULL),
     9         kx     debug_abbrev_(NULL),
     9         kx     debug_info_(NULL),
     9         kx     group_signatures_(),
     9         kx     output_file_size_(-1),
     9         kx     have_added_input_section_(false),
     9         kx     sections_are_attached_(false),
     9         kx     input_requires_executable_stack_(false),
     9         kx     input_with_gnu_stack_note_(false),
     9         kx     input_without_gnu_stack_note_(false),
     9         kx     has_static_tls_(false),
     9         kx     any_postprocessing_sections_(false),
     9         kx     resized_signatures_(false),
     9         kx     have_stabstr_section_(false),
     9         kx     section_ordering_specified_(false),
     9         kx     unique_segment_for_sections_specified_(false),
     9         kx     incremental_inputs_(NULL),
     9         kx     record_output_section_data_from_script_(false),
     9         kx     lto_slim_object_(false),
     9         kx     script_output_section_data_list_(),
     9         kx     segment_states_(NULL),
     9         kx     relaxation_debug_check_(NULL),
     9         kx     section_order_map_(),
     9         kx     section_segment_map_(),
     9         kx     input_section_position_(),
     9         kx     input_section_glob_(),
     9         kx     incremental_base_(NULL),
     9         kx     free_list_(),
     9         kx     gnu_properties_()
     9         kx {
     9         kx   // Make space for more than enough segments for a typical file.
     9         kx   // This is just for efficiency--it's OK if we wind up needing more.
     9         kx   this->segment_list_.reserve(12);
     9         kx 
     9         kx   // We expect two unattached Output_data objects: the file header and
     9         kx   // the segment headers.
     9         kx   this->special_output_list_.reserve(2);
     9         kx 
     9         kx   // Initialize structure needed for an incremental build.
     9         kx   if (parameters->incremental())
     9         kx     this->incremental_inputs_ = new Incremental_inputs;
     9         kx 
     9         kx   // The section name pool is worth optimizing in all cases, because
     9         kx   // it is small, but there are often overlaps due to .rel sections.
     9         kx   this->namepool_.set_optimize();
     9         kx }
     9         kx 
     9         kx // For incremental links, record the base file to be modified.
     9         kx 
     9         kx void
     9         kx Layout::set_incremental_base(Incremental_binary* base)
     9         kx {
     9         kx   this->incremental_base_ = base;
     9         kx   this->free_list_.init(base->output_file()->filesize(), true);
     9         kx }
     9         kx 
     9         kx // Hash a key we use to look up an output section mapping.
     9         kx 
     9         kx size_t
     9         kx Layout::Hash_key::operator()(const Layout::Key& k) const
     9         kx {
     9         kx  return k.first + k.second.first + k.second.second;
     9         kx }
     9         kx 
     9         kx // These are the debug sections that are actually used by gdb.
     9         kx // Currently, we've checked versions of gdb up to and including 7.4.
     9         kx // We only check the part of the name that follows ".debug_" or
     9         kx // ".zdebug_".
     9         kx 
     9         kx static const char* gdb_sections[] =
     9         kx {
     9         kx   "abbrev",
     9         kx   "addr",         // Fission extension
     9         kx   // "aranges",   // not used by gdb as of 7.4
     9         kx   "frame",
     9         kx   "gdb_scripts",
     9         kx   "info",
     9         kx   "types",
     9         kx   "line",
     9         kx   "loc",
     9         kx   "macinfo",
     9         kx   "macro",
     9         kx   // "pubnames",  // not used by gdb as of 7.4
     9         kx   // "pubtypes",  // not used by gdb as of 7.4
     9         kx   // "gnu_pubnames",  // Fission extension
     9         kx   // "gnu_pubtypes",  // Fission extension
     9         kx   "ranges",
     9         kx   "str",
     9         kx   "str_offsets",
     9         kx };
     9         kx 
     9         kx // This is the minimum set of sections needed for line numbers.
     9         kx 
     9         kx static const char* lines_only_debug_sections[] =
     9         kx {
     9         kx   "abbrev",
     9         kx   // "addr",      // Fission extension
     9         kx   // "aranges",   // not used by gdb as of 7.4
     9         kx   // "frame",
     9         kx   // "gdb_scripts",
     9         kx   "info",
     9         kx   // "types",
     9         kx   "line",
     9         kx   // "loc",
     9         kx   // "macinfo",
     9         kx   // "macro",
     9         kx   // "pubnames",  // not used by gdb as of 7.4
     9         kx   // "pubtypes",  // not used by gdb as of 7.4
     9         kx   // "gnu_pubnames",  // Fission extension
     9         kx   // "gnu_pubtypes",  // Fission extension
     9         kx   // "ranges",
     9         kx   "str",
     9         kx   "str_offsets",  // Fission extension
     9         kx };
     9         kx 
     9         kx // These sections are the DWARF fast-lookup tables, and are not needed
     9         kx // when building a .gdb_index section.
     9         kx 
     9         kx static const char* gdb_fast_lookup_sections[] =
     9         kx {
     9         kx   "aranges",
     9         kx   "pubnames",
     9         kx   "gnu_pubnames",
     9         kx   "pubtypes",
     9         kx   "gnu_pubtypes",
     9         kx };
     9         kx 
     9         kx // Returns whether the given debug section is in the list of
     9         kx // debug-sections-used-by-some-version-of-gdb.  SUFFIX is the
     9         kx // portion of the name following ".debug_" or ".zdebug_".
     9         kx 
     9         kx static inline bool
     9         kx is_gdb_debug_section(const char* suffix)
     9         kx {
     9         kx   // We can do this faster: binary search or a hashtable.  But why bother?
     9         kx   for (size_t i = 0; i < sizeof(gdb_sections)/sizeof(*gdb_sections); ++i)
     9         kx     if (strcmp(suffix, gdb_sections[i]) == 0)
     9         kx       return true;
     9         kx   return false;
     9         kx }
     9         kx 
     9         kx // Returns whether the given section is needed for lines-only debugging.
     9         kx 
     9         kx static inline bool
     9         kx is_lines_only_debug_section(const char* suffix)
     9         kx {
     9         kx   // We can do this faster: binary search or a hashtable.  But why bother?
     9         kx   for (size_t i = 0;
     9         kx        i < sizeof(lines_only_debug_sections)/sizeof(*lines_only_debug_sections);
     9         kx        ++i)
     9         kx     if (strcmp(suffix, lines_only_debug_sections[i]) == 0)
     9         kx       return true;
     9         kx   return false;
     9         kx }
     9         kx 
     9         kx // Returns whether the given section is a fast-lookup section that
     9         kx // will not be needed when building a .gdb_index section.
     9         kx 
     9         kx static inline bool
     9         kx is_gdb_fast_lookup_section(const char* suffix)
     9         kx {
     9         kx   // We can do this faster: binary search or a hashtable.  But why bother?
     9         kx   for (size_t i = 0;
     9         kx        i < sizeof(gdb_fast_lookup_sections)/sizeof(*gdb_fast_lookup_sections);
     9         kx        ++i)
     9         kx     if (strcmp(suffix, gdb_fast_lookup_sections[i]) == 0)
     9         kx       return true;
     9         kx   return false;
     9         kx }
     9         kx 
     9         kx // Sometimes we compress sections.  This is typically done for
     9         kx // sections that are not part of normal program execution (such as
     9         kx // .debug_* sections), and where the readers of these sections know
     9         kx // how to deal with compressed sections.  This routine doesn't say for
     9         kx // certain whether we'll compress -- it depends on commandline options
     9         kx // as well -- just whether this section is a candidate for compression.
     9         kx // (The Output_compressed_section class decides whether to compress
     9         kx // a given section, and picks the name of the compressed section.)
     9         kx 
     9         kx static bool
     9         kx is_compressible_debug_section(const char* secname)
     9         kx {
     9         kx   return (is_prefix_of(".debug", secname));
     9         kx }
     9         kx 
     9         kx // We may see compressed debug sections in input files.  Return TRUE
     9         kx // if this is the name of a compressed debug section.
     9         kx 
     9         kx bool
     9         kx is_compressed_debug_section(const char* secname)
     9         kx {
     9         kx   return (is_prefix_of(".zdebug", secname));
     9         kx }
     9         kx 
     9         kx std::string
     9         kx corresponding_uncompressed_section_name(std::string secname)
     9         kx {
     9         kx   gold_assert(secname[0] == '.' && secname[1] == 'z');
     9         kx   std::string ret(".");
     9         kx   ret.append(secname, 2, std::string::npos);
     9         kx   return ret;
     9         kx }
     9         kx 
     9         kx // Whether to include this section in the link.
     9         kx 
     9         kx template<int size, bool big_endian>
     9         kx bool
     9         kx Layout::include_section(Sized_relobj_file<size, big_endian>*, const char* name,
     9         kx 			const elfcpp::Shdr<size, big_endian>& shdr)
     9         kx {
     9         kx   if (!parameters->options().relocatable()
     9         kx       && (shdr.get_sh_flags() & elfcpp::SHF_EXCLUDE))
     9         kx     return false;
     9         kx 
     9         kx   elfcpp::Elf_Word sh_type = shdr.get_sh_type();
     9         kx 
     9         kx   if ((sh_type >= elfcpp::SHT_LOOS && sh_type <= elfcpp::SHT_HIOS)
     9         kx       || (sh_type >= elfcpp::SHT_LOPROC && sh_type <= elfcpp::SHT_HIPROC))
     9         kx     return parameters->target().should_include_section(sh_type);
     9         kx 
     9         kx   switch (sh_type)
     9         kx     {
     9         kx     case elfcpp::SHT_NULL:
     9         kx     case elfcpp::SHT_SYMTAB:
     9         kx     case elfcpp::SHT_DYNSYM:
     9         kx     case elfcpp::SHT_HASH:
     9         kx     case elfcpp::SHT_DYNAMIC:
     9         kx     case elfcpp::SHT_SYMTAB_SHNDX:
     9         kx       return false;
     9         kx 
     9         kx     case elfcpp::SHT_STRTAB:
     9         kx       // Discard the sections which have special meanings in the ELF
     9         kx       // ABI.  Keep others (e.g., .stabstr).  We could also do this by
     9         kx       // checking the sh_link fields of the appropriate sections.
     9         kx       return (strcmp(name, ".dynstr") != 0
     9         kx 	      && strcmp(name, ".strtab") != 0
     9         kx 	      && strcmp(name, ".shstrtab") != 0);
     9         kx 
     9         kx     case elfcpp::SHT_RELA:
     9         kx     case elfcpp::SHT_REL:
     9         kx     case elfcpp::SHT_GROUP:
     9         kx       // If we are emitting relocations these should be handled
     9         kx       // elsewhere.
     9         kx       gold_assert(!parameters->options().relocatable());
     9         kx       return false;
     9         kx 
     9         kx     case elfcpp::SHT_PROGBITS:
     9         kx       if (parameters->options().strip_debug()
     9         kx 	  && (shdr.get_sh_flags() & elfcpp::SHF_ALLOC) == 0)
     9         kx 	{
     9         kx 	  if (is_debug_info_section(name))
     9         kx 	    return false;
     9         kx 	}
     9         kx       if (parameters->options().strip_debug_non_line()
     9         kx 	  && (shdr.get_sh_flags() & elfcpp::SHF_ALLOC) == 0)
     9         kx 	{
     9         kx 	  // Debugging sections can only be recognized by name.
     9         kx 	  if (is_prefix_of(".debug_", name)
     9         kx 	      && !is_lines_only_debug_section(name + 7))
     9         kx 	    return false;
     9         kx 	  if (is_prefix_of(".zdebug_", name)
     9         kx 	      && !is_lines_only_debug_section(name + 8))
     9         kx 	    return false;
     9         kx 	}
     9         kx       if (parameters->options().strip_debug_gdb()
     9         kx 	  && (shdr.get_sh_flags() & elfcpp::SHF_ALLOC) == 0)
     9         kx 	{
     9         kx 	  // Debugging sections can only be recognized by name.
     9         kx 	  if (is_prefix_of(".debug_", name)
     9         kx 	      && !is_gdb_debug_section(name + 7))
     9         kx 	    return false;
     9         kx 	  if (is_prefix_of(".zdebug_", name)
     9         kx 	      && !is_gdb_debug_section(name + 8))
     9         kx 	    return false;
     9         kx 	}
     9         kx       if (parameters->options().gdb_index()
     9         kx 	  && (shdr.get_sh_flags() & elfcpp::SHF_ALLOC) == 0)
     9         kx 	{
     9         kx 	  // When building .gdb_index, we can strip .debug_pubnames,
     9         kx 	  // .debug_pubtypes, and .debug_aranges sections.
     9         kx 	  if (is_prefix_of(".debug_", name)
     9         kx 	      && is_gdb_fast_lookup_section(name + 7))
     9         kx 	    return false;
     9         kx 	  if (is_prefix_of(".zdebug_", name)
     9         kx 	      && is_gdb_fast_lookup_section(name + 8))
     9         kx 	    return false;
     9         kx 	}
     9         kx       if (parameters->options().strip_lto_sections()
     9         kx 	  && !parameters->options().relocatable()
     9         kx 	  && (shdr.get_sh_flags() & elfcpp::SHF_ALLOC) == 0)
     9         kx 	{
     9         kx 	  // Ignore LTO sections containing intermediate code.
     9         kx 	  if (is_prefix_of(".gnu.lto_", name))
     9         kx 	    return false;
     9         kx 	}
     9         kx       // The GNU linker strips .gnu_debuglink sections, so we do too.
     9         kx       // This is a feature used to keep debugging information in
     9         kx       // separate files.
     9         kx       if (strcmp(name, ".gnu_debuglink") == 0)
     9         kx 	return false;
     9         kx       return true;
     9         kx 
     9         kx     default:
     9         kx       return true;
     9         kx     }
     9         kx }
     9         kx 
     9         kx // Return an output section named NAME, or NULL if there is none.
     9         kx 
     9         kx Output_section*
     9         kx Layout::find_output_section(const char* name) const
     9         kx {
     9         kx   for (Section_list::const_iterator p = this->section_list_.begin();
     9         kx        p != this->section_list_.end();
     9         kx        ++p)
     9         kx     if (strcmp((*p)->name(), name) == 0)
     9         kx       return *p;
     9         kx   return NULL;
     9         kx }
     9         kx 
     9         kx // Return an output segment of type TYPE, with segment flags SET set
     9         kx // and segment flags CLEAR clear.  Return NULL if there is none.
     9         kx 
     9         kx Output_segment*
     9         kx Layout::find_output_segment(elfcpp::PT type, elfcpp::Elf_Word set,
     9         kx 			    elfcpp::Elf_Word clear) const
     9         kx {
     9         kx   for (Segment_list::const_iterator p = this->segment_list_.begin();
     9         kx        p != this->segment_list_.end();
     9         kx        ++p)
     9         kx     if (static_cast<elfcpp::PT>((*p)->type()) == type
     9         kx 	&& ((*p)->flags() & set) == set
     9         kx 	&& ((*p)->flags() & clear) == 0)
     9         kx       return *p;
     9         kx   return NULL;
     9         kx }
     9         kx 
     9         kx // When we put a .ctors or .dtors section with more than one word into
     9         kx // a .init_array or .fini_array section, we need to reverse the words
     9         kx // in the .ctors/.dtors section.  This is because .init_array executes
     9         kx // constructors front to back, where .ctors executes them back to
     9         kx // front, and vice-versa for .fini_array/.dtors.  Although we do want
     9         kx // to remap .ctors/.dtors into .init_array/.fini_array because it can
     9         kx // be more efficient, we don't want to change the order in which
     9         kx // constructors/destructors are run.  This set just keeps track of
     9         kx // these sections which need to be reversed.  It is only changed by
     9         kx // Layout::layout.  It should be a private member of Layout, but that
     9         kx // would require layout.h to #include object.h to get the definition
     9         kx // of Section_id.
     9         kx static Unordered_set<Section_id, Section_id_hash> ctors_sections_in_init_array;
     9         kx 
     9         kx // Return whether OBJECT/SHNDX is a .ctors/.dtors section mapped to a
     9         kx // .init_array/.fini_array section.
     9         kx 
     9         kx bool
     9         kx Layout::is_ctors_in_init_array(Relobj* relobj, unsigned int shndx) const
     9         kx {
     9         kx   return (ctors_sections_in_init_array.find(Section_id(relobj, shndx))
     9         kx 	  != ctors_sections_in_init_array.end());
     9         kx }
     9         kx 
     9         kx // Return the output section to use for section NAME with type TYPE
     9         kx // and section flags FLAGS.  NAME must be canonicalized in the string
     9         kx // pool, and NAME_KEY is the key.  ORDER is where this should appear
     9         kx // in the output sections.  IS_RELRO is true for a relro section.
     9         kx 
     9         kx Output_section*
     9         kx Layout::get_output_section(const char* name, Stringpool::Key name_key,
     9         kx 			   elfcpp::Elf_Word type, elfcpp::Elf_Xword flags,
     9         kx 			   Output_section_order order, bool is_relro)
     9         kx {
     9         kx   elfcpp::Elf_Word lookup_type = type;
     9         kx 
     9         kx   // For lookup purposes, treat INIT_ARRAY, FINI_ARRAY, and
     9         kx   // PREINIT_ARRAY like PROGBITS.  This ensures that we combine
     9         kx   // .init_array, .fini_array, and .preinit_array sections by name
     9         kx   // whatever their type in the input file.  We do this because the
     9         kx   // types are not always right in the input files.
     9         kx   if (lookup_type == elfcpp::SHT_INIT_ARRAY
     9         kx       || lookup_type == elfcpp::SHT_FINI_ARRAY
     9         kx       || lookup_type == elfcpp::SHT_PREINIT_ARRAY)
     9         kx     lookup_type = elfcpp::SHT_PROGBITS;
     9         kx 
     9         kx   elfcpp::Elf_Xword lookup_flags = flags;
     9         kx 
     9         kx   // Ignoring SHF_WRITE and SHF_EXECINSTR here means that we combine
     9         kx   // read-write with read-only sections.  Some other ELF linkers do
     9         kx   // not do this.  FIXME: Perhaps there should be an option
     9         kx   // controlling this.
     9         kx   lookup_flags &= ~(elfcpp::SHF_WRITE | elfcpp::SHF_EXECINSTR);
     9         kx 
     9         kx   const Key key(name_key, std::make_pair(lookup_type, lookup_flags));
     9         kx   const std::pair<Key, Output_section*> v(key, NULL);
     9         kx   std::pair<Section_name_map::iterator, bool> ins(
     9         kx     this->section_name_map_.insert(v));
     9         kx 
     9         kx   if (!ins.second)
     9         kx     return ins.first->second;
     9         kx   else
     9         kx     {
     9         kx       // This is the first time we've seen this name/type/flags
     9         kx       // combination.  For compatibility with the GNU linker, we
     9         kx       // combine sections with contents and zero flags with sections
     9         kx       // with non-zero flags.  This is a workaround for cases where
     9         kx       // assembler code forgets to set section flags.  FIXME: Perhaps
     9         kx       // there should be an option to control this.
     9         kx       Output_section* os = NULL;
     9         kx 
     9         kx       if (lookup_type == elfcpp::SHT_PROGBITS)
     9         kx 	{
     9         kx 	  if (flags == 0)
     9         kx 	    {
     9         kx 	      Output_section* same_name = this->find_output_section(name);
     9         kx 	      if (same_name != NULL
     9         kx 		  && (same_name->type() == elfcpp::SHT_PROGBITS
     9         kx 		      || same_name->type() == elfcpp::SHT_INIT_ARRAY
     9         kx 		      || same_name->type() == elfcpp::SHT_FINI_ARRAY
     9         kx 		      || same_name->type() == elfcpp::SHT_PREINIT_ARRAY)
     9         kx 		  && (same_name->flags() & elfcpp::SHF_TLS) == 0)
     9         kx 		os = same_name;
     9         kx 	    }
     9         kx #if 0 /* BZ 1722715, PR 17556.  */
     9         kx 	  else if ((flags & elfcpp::SHF_TLS) == 0)
     9         kx 	    {
     9         kx 	      elfcpp::Elf_Xword zero_flags = 0;
     9         kx 	      const Key zero_key(name_key, std::make_pair(lookup_type,
     9         kx 							  zero_flags));
     9         kx 	      Section_name_map::iterator p =
     9         kx 		  this->section_name_map_.find(zero_key);
     9         kx 	      if (p != this->section_name_map_.end())
     9         kx 		os = p->second;
     9         kx 	    }
     9         kx #endif
     9         kx 	}
     9         kx 
     9         kx       if (os == NULL)
     9         kx 	os = this->make_output_section(name, type, flags, order, is_relro);
     9         kx 
     9         kx       ins.first->second = os;
     9         kx       return os;
     9         kx     }
     9         kx }
     9         kx 
     9         kx // Returns TRUE iff NAME (an input section from RELOBJ) will
     9         kx // be mapped to an output section that should be KEPT.
     9         kx 
     9         kx bool
     9         kx Layout::keep_input_section(const Relobj* relobj, const char* name)
     9         kx {
     9         kx   if (! this->script_options_->saw_sections_clause())
     9         kx     return false;
     9         kx 
     9         kx   Script_sections* ss = this->script_options_->script_sections();
     9         kx   const char* file_name = relobj == NULL ? NULL : relobj->name().c_str();
     9         kx   Output_section** output_section_slot;
     9         kx   Script_sections::Section_type script_section_type;
     9         kx   bool keep;
     9         kx 
     9         kx   name = ss->output_section_name(file_name, name, &output_section_slot,
     9         kx 				 &script_section_type, &keep, true);
     9         kx   return name != NULL && keep;
     9         kx }
     9         kx 
     9         kx // Clear the input section flags that should not be copied to the
     9         kx // output section.
     9         kx 
     9         kx elfcpp::Elf_Xword
     9         kx Layout::get_output_section_flags(elfcpp::Elf_Xword input_section_flags)
     9         kx {
     9         kx   // Some flags in the input section should not be automatically
     9         kx   // copied to the output section.
     9         kx   input_section_flags &= ~ (elfcpp::SHF_INFO_LINK
     9         kx 			    | elfcpp::SHF_GROUP
     9         kx 			    | elfcpp::SHF_COMPRESSED
     9         kx 			    | elfcpp::SHF_MERGE
     9         kx 			    | elfcpp::SHF_STRINGS);
     9         kx 
     9         kx   // We only clear the SHF_LINK_ORDER flag in for
     9         kx   // a non-relocatable link.
     9         kx   if (!parameters->options().relocatable())
     9         kx     input_section_flags &= ~elfcpp::SHF_LINK_ORDER;
     9         kx 
     9         kx   return input_section_flags;
     9         kx }
     9         kx 
     9         kx // Pick the output section to use for section NAME, in input file
     9         kx // RELOBJ, with type TYPE and flags FLAGS.  RELOBJ may be NULL for a
     9         kx // linker created section.  IS_INPUT_SECTION is true if we are
     9         kx // choosing an output section for an input section found in a input
     9         kx // file.  ORDER is where this section should appear in the output
     9         kx // sections.  IS_RELRO is true for a relro section.  This will return
     9         kx // NULL if the input section should be discarded.  MATCH_INPUT_SPEC
     9         kx // is true if the section name should be matched against input specs
     9         kx // in a linker script.
     9         kx 
     9         kx Output_section*
     9         kx Layout::choose_output_section(const Relobj* relobj, const char* name,
     9         kx 			      elfcpp::Elf_Word type, elfcpp::Elf_Xword flags,
     9         kx 			      bool is_input_section, Output_section_order order,
     9         kx 			      bool is_relro, bool is_reloc,
     9         kx 			      bool match_input_spec)
     9         kx {
     9         kx   // We should not see any input sections after we have attached
     9         kx   // sections to segments.
     9         kx   gold_assert(!is_input_section || !this->sections_are_attached_);
     9         kx 
     9         kx   flags = this->get_output_section_flags(flags);
     9         kx 
     9         kx   if (this->script_options_->saw_sections_clause() && !is_reloc)
     9         kx     {
     9         kx       // We are using a SECTIONS clause, so the output section is
     9         kx       // chosen based only on the name.
     9         kx 
     9         kx       Script_sections* ss = this->script_options_->script_sections();
     9         kx       const char* file_name = relobj == NULL ? NULL : relobj->name().c_str();
     9         kx       Output_section** output_section_slot;
     9         kx       Script_sections::Section_type script_section_type;
     9         kx       const char* orig_name = name;
     9         kx       bool keep;
     9         kx       name = ss->output_section_name(file_name, name, &output_section_slot,
     9         kx 				     &script_section_type, &keep,
     9         kx 				     match_input_spec);
     9         kx 
     9         kx       if (name == NULL)
     9         kx 	{
     9         kx 	  gold_debug(DEBUG_SCRIPT, _("Unable to create output section '%s' "
     9         kx 				     "because it is not allowed by the "
     9         kx 				     "SECTIONS clause of the linker script"),
     9         kx 		     orig_name);
     9         kx 	  // The SECTIONS clause says to discard this input section.
     9         kx 	  return NULL;
     9         kx 	}
     9         kx 
     9         kx       // We can only handle script section types ST_NONE and ST_NOLOAD.
     9         kx       switch (script_section_type)
     9         kx 	{
     9         kx 	case Script_sections::ST_NONE:
     9         kx 	  break;
     9         kx 	case Script_sections::ST_NOLOAD:
     9         kx 	  flags &= elfcpp::SHF_ALLOC;
     9         kx 	  break;
     9         kx 	default:
     9         kx 	  gold_unreachable();
     9         kx 	}
     9         kx 
     9         kx       // If this is an orphan section--one not mentioned in the linker
     9         kx       // script--then OUTPUT_SECTION_SLOT will be NULL, and we do the
     9         kx       // default processing below.
     9         kx 
     9         kx       if (output_section_slot != NULL)
     9         kx 	{
     9         kx 	  if (*output_section_slot != NULL)
     9         kx 	    {
     9         kx 	      (*output_section_slot)->update_flags_for_input_section(flags);
     9         kx 	      return *output_section_slot;
     9         kx 	    }
     9         kx 
     9         kx 	  // We don't put sections found in the linker script into
     9         kx 	  // SECTION_NAME_MAP_.  That keeps us from getting confused
     9         kx 	  // if an orphan section is mapped to a section with the same
     9         kx 	  // name as one in the linker script.
     9         kx 
     9         kx 	  name = this->namepool_.add(name, false, NULL);
     9         kx 
     9         kx 	  Output_section* os = this->make_output_section(name, type, flags,
     9         kx 							 order, is_relro);
     9         kx 
     9         kx 	  os->set_found_in_sections_clause();
     9         kx 
     9         kx 	  // Special handling for NOLOAD sections.
     9         kx 	  if (script_section_type == Script_sections::ST_NOLOAD)
     9         kx 	    {
     9         kx 	      os->set_is_noload();
     9         kx 
     9         kx 	      // The constructor of Output_section sets addresses of non-ALLOC
     9         kx 	      // sections to 0 by default.  We don't want that for NOLOAD
     9         kx 	      // sections even if they have no SHF_ALLOC flag.
     9         kx 	      if ((os->flags() & elfcpp::SHF_ALLOC) == 0
     9         kx 		  && os->is_address_valid())
     9         kx 		{
     9         kx 		  gold_assert(os->address() == 0
     9         kx 			      && !os->is_offset_valid()
     9         kx 			      && !os->is_data_size_valid());
     9         kx 		  os->reset_address_and_file_offset();
     9         kx 		}
     9         kx 	    }
     9         kx 
     9         kx 	  *output_section_slot = os;
     9         kx 	  return os;
     9         kx 	}
     9         kx     }
     9         kx 
     9         kx   // FIXME: Handle SHF_OS_NONCONFORMING somewhere.
     9         kx 
     9         kx   size_t len = strlen(name);
     9         kx   std::string uncompressed_name;
     9         kx 
     9         kx   // Compressed debug sections should be mapped to the corresponding
     9         kx   // uncompressed section.
     9         kx   if (is_compressed_debug_section(name))
     9         kx     {
     9         kx       uncompressed_name =
     9         kx 	  corresponding_uncompressed_section_name(std::string(name, len));
     9         kx       name = uncompressed_name.c_str();
     9         kx       len = uncompressed_name.length();
     9         kx     }
     9         kx 
     9         kx   // Turn NAME from the name of the input section into the name of the
     9         kx   // output section.
     9         kx   if (is_input_section
     9         kx       && !this->script_options_->saw_sections_clause()
     9         kx       && !parameters->options().relocatable())
     9         kx     {
     9         kx       const char *orig_name = name;
     9         kx       name = parameters->target().output_section_name(relobj, name, &len);
     9         kx       if (name == NULL)
     9         kx 	name = Layout::output_section_name(relobj, orig_name, &len);
     9         kx     }
     9         kx 
     9         kx   Stringpool::Key name_key;
     9         kx   name = this->namepool_.add_with_length(name, len, true, &name_key);
     9         kx 
     9         kx   // Find or make the output section.  The output section is selected
     9         kx   // based on the section name, type, and flags.
     9         kx   return this->get_output_section(name, name_key, type, flags, order, is_relro);
     9         kx }
     9         kx 
     9         kx // For incremental links, record the initial fixed layout of a section
     9         kx // from the base file, and return a pointer to the Output_section.
     9         kx 
     9         kx template<int size, bool big_endian>
     9         kx Output_section*
     9         kx Layout::init_fixed_output_section(const char* name,
     9         kx 				  elfcpp::Shdr<size, big_endian>& shdr)
     9         kx {
     9         kx   unsigned int sh_type = shdr.get_sh_type();
     9         kx 
     9         kx   // We preserve the layout of PROGBITS, NOBITS, INIT_ARRAY, FINI_ARRAY,
     9         kx   // PRE_INIT_ARRAY, and NOTE sections.
     9         kx   // All others will be created from scratch and reallocated.
     9         kx   if (!can_incremental_update(sh_type))
     9         kx     return NULL;
     9         kx 
     9         kx   // If we're generating a .gdb_index section, we need to regenerate
     9         kx   // it from scratch.
     9         kx   if (parameters->options().gdb_index()
     9         kx       && sh_type == elfcpp::SHT_PROGBITS
     9         kx       && strcmp(name, ".gdb_index") == 0)
     9         kx     return NULL;
     9         kx 
     9         kx   typename elfcpp::Elf_types<size>::Elf_Addr sh_addr = shdr.get_sh_addr();
     9         kx   typename elfcpp::Elf_types<size>::Elf_Off sh_offset = shdr.get_sh_offset();
     9         kx   typename elfcpp::Elf_types<size>::Elf_WXword sh_size = shdr.get_sh_size();
     9         kx   typename elfcpp::Elf_types<size>::Elf_WXword sh_flags =
     9         kx       this->get_output_section_flags(shdr.get_sh_flags());
     9         kx   typename elfcpp::Elf_types<size>::Elf_WXword sh_addralign =
     9         kx       shdr.get_sh_addralign();
     9         kx 
     9         kx   // Make the output section.
     9         kx   Stringpool::Key name_key;
     9         kx   name = this->namepool_.add(name, true, &name_key);
     9         kx   Output_section* os = this->get_output_section(name, name_key, sh_type,
     9         kx 						sh_flags, ORDER_INVALID, false);
     9         kx   os->set_fixed_layout(sh_addr, sh_offset, sh_size, sh_addralign);
     9         kx   if (sh_type != elfcpp::SHT_NOBITS)
     9         kx     this->free_list_.remove(sh_offset, sh_offset + sh_size);
     9         kx   return os;
     9         kx }
     9         kx 
     9         kx // Return the index by which an input section should be ordered.  This
     9         kx // is used to sort some .text sections, for compatibility with GNU ld.
     9         kx 
     9         kx int
     9         kx Layout::special_ordering_of_input_section(const char* name)
     9         kx {
     9         kx   // The GNU linker has some special handling for some sections that
     9         kx   // wind up in the .text section.  Sections that start with these
     9         kx   // prefixes must appear first, and must appear in the order listed
     9         kx   // here.
     9         kx   static const char* const text_section_sort[] =
     9         kx   {
     9         kx     ".text.unlikely",
     9         kx     ".text.exit",
     9         kx     ".text.startup",
     9         kx     ".text.hot",
     9         kx     ".text.sorted"
     9         kx   };
     9         kx 
     9         kx   for (size_t i = 0;
     9         kx        i < sizeof(text_section_sort) / sizeof(text_section_sort[0]);
     9         kx        i++)
     9         kx     if (is_prefix_of(text_section_sort[i], name))
     9         kx       return i;
     9         kx 
     9         kx   return -1;
     9         kx }
     9         kx 
     9         kx // Return the output section to use for input section SHNDX, with name
     9         kx // NAME, with header HEADER, from object OBJECT.  RELOC_SHNDX is the
     9         kx // index of a relocation section which applies to this section, or 0
     9         kx // if none, or -1U if more than one.  RELOC_TYPE is the type of the
     9         kx // relocation section if there is one.  Set *OFF to the offset of this
     9         kx // input section without the output section.  Return NULL if the
     9         kx // section should be discarded.  Set *OFF to -1 if the section
     9         kx // contents should not be written directly to the output file, but
     9         kx // will instead receive special handling.
     9         kx 
     9         kx template<int size, bool big_endian>
     9         kx Output_section*
     9         kx Layout::layout(Sized_relobj_file<size, big_endian>* object, unsigned int shndx,
     9         kx 	       const char* name, const elfcpp::Shdr<size, big_endian>& shdr,
     9         kx 	       unsigned int sh_type, unsigned int reloc_shndx,
     9         kx 	       unsigned int, off_t* off)
     9         kx {
     9         kx   *off = 0;
     9         kx 
     9         kx   if (!this->include_section(object, name, shdr))
     9         kx     return NULL;
     9         kx 
     9         kx   // In a relocatable link a grouped section must not be combined with
     9         kx   // any other sections.
     9         kx   Output_section* os;
     9         kx   if (parameters->options().relocatable()
     9         kx       && (shdr.get_sh_flags() & elfcpp::SHF_GROUP) != 0)
     9         kx     {
     9         kx       // Some flags in the input section should not be automatically
     9         kx       // copied to the output section.
     9         kx       elfcpp::Elf_Xword sh_flags = (shdr.get_sh_flags()
     9         kx 				    & ~ elfcpp::SHF_COMPRESSED);
     9         kx       name = this->namepool_.add(name, true, NULL);
     9         kx       os = this->make_output_section(name, sh_type, sh_flags, ORDER_INVALID,
     9         kx 				     false);
     9         kx     }
     9         kx   else
     9         kx     {
     9         kx       // Get the section flags and mask out any flags that do not
     9         kx       // take part in section matching.
     9         kx       elfcpp::Elf_Xword sh_flags
     9         kx 	  = (this->get_output_section_flags(shdr.get_sh_flags())
     9         kx 	     & ~object->osabi().ignored_sh_flags());
     9         kx 
     9         kx       // All ".text.unlikely.*" sections can be moved to a unique
     9         kx       // segment with --text-unlikely-segment option.
     9         kx       bool text_unlikely_segment
     9         kx 	  = (parameters->options().text_unlikely_segment()
     9         kx 	     && is_prefix_of(".text.unlikely",
     9         kx 			     object->section_name(shndx).c_str()));
     9         kx       if (text_unlikely_segment)
     9         kx 	{
     9         kx 	  Stringpool::Key name_key;
     9         kx 	  const char* os_name = this->namepool_.add(".text.unlikely", true,
     9         kx 						    &name_key);
     9         kx 	  os = this->get_output_section(os_name, name_key, sh_type, sh_flags,
     9         kx 					ORDER_INVALID, false);
     9         kx 	  // Map this output section to a unique segment.  This is done to
     9         kx 	  // separate "text" that is not likely to be executed from "text"
     9         kx 	  // that is likely executed.
     9         kx 	  os->set_is_unique_segment();
     9         kx 	}
     9         kx       else
     9         kx 	{
     9         kx 	  // Plugins can choose to place one or more subsets of sections in
     9         kx 	  // unique segments and this is done by mapping these section subsets
     9         kx 	  // to unique output sections.  Check if this section needs to be
     9         kx 	  // remapped to a unique output section.
     9         kx 	  Section_segment_map::iterator it
     9         kx 	    = this->section_segment_map_.find(Const_section_id(object, shndx));
     9         kx 	  if (it == this->section_segment_map_.end())
     9         kx 	    {
     9         kx 	      os = this->choose_output_section(object, name, sh_type,
     9         kx 					       sh_flags, true, ORDER_INVALID,
     9         kx 					       false, false, true);
     9         kx 	    }
     9         kx 	  else
     9         kx 	    {
     9         kx 	      // We know the name of the output section, directly call
     9         kx 	      // get_output_section here by-passing choose_output_section.
     9         kx 	      const char* os_name = it->second->name;
     9         kx 	      Stringpool::Key name_key;
     9         kx 	      os_name = this->namepool_.add(os_name, true, &name_key);
     9         kx 	      os = this->get_output_section(os_name, name_key, sh_type,
     9         kx 					    sh_flags, ORDER_INVALID, false);
     9         kx 	      if (!os->is_unique_segment())
     9         kx 		{
     9         kx 		  os->set_is_unique_segment();
     9         kx 		  os->set_extra_segment_flags(it->second->flags);
     9         kx 		  os->set_segment_alignment(it->second->align);
     9         kx 		}
     9         kx 	    }
     9         kx 	  }
     9         kx       if (os == NULL)
     9         kx 	return NULL;
     9         kx     }
     9         kx 
     9         kx   // By default the GNU linker sorts input sections whose names match
     9         kx   // .ctors.*, .dtors.*, .init_array.*, or .fini_array.*.  The
     9         kx   // sections are sorted by name.  This is used to implement
     9         kx   // constructor priority ordering.  We are compatible.  When we put
     9         kx   // .ctor sections in .init_array and .dtor sections in .fini_array,
     9         kx   // we must also sort plain .ctor and .dtor sections.
     9         kx   if (!this->script_options_->saw_sections_clause()
     9         kx       && !parameters->options().relocatable()
     9         kx       && (is_prefix_of(".ctors.", name)
     9         kx 	  || is_prefix_of(".dtors.", name)
     9         kx 	  || is_prefix_of(".init_array.", name)
     9         kx 	  || is_prefix_of(".fini_array.", name)
     9         kx 	  || (parameters->options().ctors_in_init_array()
     9         kx 	      && (strcmp(name, ".ctors") == 0
     9         kx 		  || strcmp(name, ".dtors") == 0))))
     9         kx     os->set_must_sort_attached_input_sections();
     9         kx 
     9         kx   // By default the GNU linker sorts some special text sections ahead
     9         kx   // of others.  We are compatible.
     9         kx   if (parameters->options().text_reorder()
     9         kx       && !this->script_options_->saw_sections_clause()
     9         kx       && !this->is_section_ordering_specified()
     9         kx       && !parameters->options().relocatable()
     9         kx       && Layout::special_ordering_of_input_section(name) >= 0)
     9         kx     os->set_must_sort_attached_input_sections();
     9         kx 
     9         kx   // If this is a .ctors or .ctors.* section being mapped to a
     9         kx   // .init_array section, or a .dtors or .dtors.* section being mapped
     9         kx   // to a .fini_array section, we will need to reverse the words if
     9         kx   // there is more than one.  Record this section for later.  See
     9         kx   // ctors_sections_in_init_array above.
     9         kx   if (!this->script_options_->saw_sections_clause()
     9         kx       && !parameters->options().relocatable()
     9         kx       && shdr.get_sh_size() > size / 8
     9         kx       && (((strcmp(name, ".ctors") == 0
     9         kx 	    || is_prefix_of(".ctors.", name))
     9         kx 	   && strcmp(os->name(), ".init_array") == 0)
     9         kx 	  || ((strcmp(name, ".dtors") == 0
     9         kx 	       || is_prefix_of(".dtors.", name))
     9         kx 	      && strcmp(os->name(), ".fini_array") == 0)))
     9         kx     ctors_sections_in_init_array.insert(Section_id(object, shndx));
     9         kx 
     9         kx   // FIXME: Handle SHF_LINK_ORDER somewhere.
     9         kx 
     9         kx   elfcpp::Elf_Xword orig_flags = os->flags();
     9         kx 
     9         kx   *off = os->add_input_section(this, object, shndx, name, shdr, reloc_shndx,
     9         kx 			       this->script_options_->saw_sections_clause());
     9         kx 
     9         kx   // If the flags changed, we may have to change the order.
     9         kx   if ((orig_flags & elfcpp::SHF_ALLOC) != 0)
     9         kx     {
     9         kx       orig_flags &= (elfcpp::SHF_WRITE | elfcpp::SHF_EXECINSTR);
     9         kx       elfcpp::Elf_Xword new_flags =
     9         kx 	os->flags() & (elfcpp::SHF_WRITE | elfcpp::SHF_EXECINSTR);
     9         kx       if (orig_flags != new_flags)
     9         kx 	os->set_order(this->default_section_order(os, false));
     9         kx     }
     9         kx 
     9         kx   this->have_added_input_section_ = true;
     9         kx 
     9         kx   return os;
     9         kx }
     9         kx 
     9         kx // Maps section SECN to SEGMENT s.
     9         kx void
     9         kx Layout::insert_section_segment_map(Const_section_id secn,
     9         kx 				   Unique_segment_info *s)
     9         kx {
     9         kx   gold_assert(this->unique_segment_for_sections_specified_);
     9         kx   this->section_segment_map_[secn] = s;
     9         kx }
     9         kx 
     9         kx // Handle a relocation section when doing a relocatable link.
     9         kx 
     9         kx template<int size, bool big_endian>
     9         kx Output_section*
     9         kx Layout::layout_reloc(Sized_relobj_file<size, big_endian>*,
     9         kx 		     unsigned int,
     9         kx 		     const elfcpp::Shdr<size, big_endian>& shdr,
     9         kx 		     Output_section* data_section,
     9         kx 		     Relocatable_relocs* rr)
     9         kx {
     9         kx   gold_assert(parameters->options().relocatable()
     9         kx 	      || parameters->options().emit_relocs());
     9         kx 
     9         kx   int sh_type = shdr.get_sh_type();
     9         kx 
     9         kx   std::string name;
     9         kx   if (sh_type == elfcpp::SHT_REL)
     9         kx     name = ".rel";
     9         kx   else if (sh_type == elfcpp::SHT_RELA)
     9         kx     name = ".rela";
     9         kx   else
     9         kx     gold_unreachable();
     9         kx   name += data_section->name();
     9         kx 
     9         kx   // If the output data section already has a reloc section, use that;
     9         kx   // otherwise, make a new one.
     9         kx   Output_section* os = data_section->reloc_section();
     9         kx   if (os == NULL)
     9         kx     {
     9         kx       const char* n = this->namepool_.add(name.c_str(), true, NULL);
     9         kx       os = this->make_output_section(n, sh_type, shdr.get_sh_flags(),
     9         kx 				     ORDER_INVALID, false);
     9         kx       os->set_should_link_to_symtab();
     9         kx       os->set_info_section(data_section);
     9         kx       data_section->set_reloc_section(os);
     9         kx     }
     9         kx 
     9         kx   Output_section_data* posd;
     9         kx   if (sh_type == elfcpp::SHT_REL)
     9         kx     {
     9         kx       os->set_entsize(elfcpp::Elf_sizes<size>::rel_size);
     9         kx       posd = new Output_relocatable_relocs<elfcpp::SHT_REL,
     9         kx 					   size,
     9         kx 					   big_endian>(rr);
     9         kx     }
     9         kx   else if (sh_type == elfcpp::SHT_RELA)
     9         kx     {
     9         kx       os->set_entsize(elfcpp::Elf_sizes<size>::rela_size);
     9         kx       posd = new Output_relocatable_relocs<elfcpp::SHT_RELA,
     9         kx 					   size,
     9         kx 					   big_endian>(rr);
     9         kx     }
     9         kx   else
     9         kx     gold_unreachable();
     9         kx 
     9         kx   os->add_output_section_data(posd);
     9         kx   rr->set_output_data(posd);
     9         kx 
     9         kx   return os;
     9         kx }
     9         kx 
     9         kx // Handle a group section when doing a relocatable link.
     9         kx 
     9         kx template<int size, bool big_endian>
     9         kx void
     9         kx Layout::layout_group(Symbol_table* symtab,
     9         kx 		     Sized_relobj_file<size, big_endian>* object,
     9         kx 		     unsigned int,
     9         kx 		     const char* group_section_name,
     9         kx 		     const char* signature,
     9         kx 		     const elfcpp::Shdr<size, big_endian>& shdr,
     9         kx 		     elfcpp::Elf_Word flags,
     9         kx 		     std::vector<unsigned int>* shndxes)
     9         kx {
     9         kx   gold_assert(parameters->options().relocatable());
     9         kx   gold_assert(shdr.get_sh_type() == elfcpp::SHT_GROUP);
     9         kx   group_section_name = this->namepool_.add(group_section_name, true, NULL);
     9         kx   Output_section* os = this->make_output_section(group_section_name,
     9         kx 						 elfcpp::SHT_GROUP,
     9         kx 						 shdr.get_sh_flags(),
     9         kx 						 ORDER_INVALID, false);
     9         kx 
     9         kx   // We need to find a symbol with the signature in the symbol table.
     9         kx   // If we don't find one now, we need to look again later.
     9         kx   Symbol* sym = symtab->lookup(signature, NULL);
     9         kx   if (sym != NULL)
     9         kx     os->set_info_symndx(sym);
     9         kx   else
     9         kx     {
     9         kx       // Reserve some space to minimize reallocations.
     9         kx       if (this->group_signatures_.empty())
     9         kx 	this->group_signatures_.reserve(this->number_of_input_files_ * 16);
     9         kx 
     9         kx       // We will wind up using a symbol whose name is the signature.
     9         kx       // So just put the signature in the symbol name pool to save it.
     9         kx       signature = symtab->canonicalize_name(signature);
     9         kx       this->group_signatures_.push_back(Group_signature(os, signature));
     9         kx     }
     9         kx 
     9         kx   os->set_should_link_to_symtab();
     9         kx   os->set_entsize(4);
     9         kx 
     9         kx   section_size_type entry_count =
     9         kx     convert_to_section_size_type(shdr.get_sh_size() / 4);
     9         kx   Output_section_data* posd =
     9         kx     new Output_data_group<size, big_endian>(object, entry_count, flags,
     9         kx 					    shndxes);
     9         kx   os->add_output_section_data(posd);
     9         kx }
     9         kx 
     9         kx // Special GNU handling of sections name .eh_frame.  They will
     9         kx // normally hold exception frame data as defined by the C++ ABI
     9         kx // (http://codesourcery.com/cxx-abi/).
     9         kx 
     9         kx template<int size, bool big_endian>
     9         kx Output_section*
     9         kx Layout::layout_eh_frame(Sized_relobj_file<size, big_endian>* object,
     9         kx 			const unsigned char* symbols,
     9         kx 			off_t symbols_size,
     9         kx 			const unsigned char* symbol_names,
     9         kx 			off_t symbol_names_size,
     9         kx 			unsigned int shndx,
     9         kx 			const elfcpp::Shdr<size, big_endian>& shdr,
     9         kx 			unsigned int reloc_shndx, unsigned int reloc_type,
     9         kx 			off_t* off)
     9         kx {
     9         kx   const unsigned int unwind_section_type =
     9         kx       parameters->target().unwind_section_type();
     9         kx 
     9         kx   gold_assert(shdr.get_sh_type() == elfcpp::SHT_PROGBITS
     9         kx 	      || shdr.get_sh_type() == unwind_section_type);
     9         kx   gold_assert((shdr.get_sh_flags() & elfcpp::SHF_ALLOC) != 0);
     9         kx 
     9         kx   Output_section* os = this->make_eh_frame_section(object);
     9         kx   if (os == NULL)
     9         kx     return NULL;
     9         kx 
     9         kx   gold_assert(this->eh_frame_section_ == os);
     9         kx 
     9         kx   elfcpp::Elf_Xword orig_flags = os->flags();
     9         kx 
     9         kx   Eh_frame::Eh_frame_section_disposition disp =
     9         kx       Eh_frame::EH_UNRECOGNIZED_SECTION;
     9         kx   if (!parameters->incremental())
     9         kx     {
     9         kx       disp = this->eh_frame_data_->add_ehframe_input_section(object,
     9         kx 							     symbols,
     9         kx 							     symbols_size,
     9         kx 							     symbol_names,
     9         kx 							     symbol_names_size,
     9         kx 							     shndx,
     9         kx 							     reloc_shndx,
     9         kx 							     reloc_type);
     9         kx     }
     9         kx 
     9         kx   if (disp == Eh_frame::EH_OPTIMIZABLE_SECTION)
     9         kx     {
     9         kx       os->update_flags_for_input_section(shdr.get_sh_flags());
     9         kx 
     9         kx       // A writable .eh_frame section is a RELRO section.
     9         kx       if ((orig_flags & (elfcpp::SHF_WRITE | elfcpp::SHF_EXECINSTR))
     9         kx 	  != (os->flags() & (elfcpp::SHF_WRITE | elfcpp::SHF_EXECINSTR)))
     9         kx 	{
     9         kx 	  os->set_is_relro();
     9         kx 	  os->set_order(ORDER_RELRO);
     9         kx 	}
     9         kx 
     9         kx       *off = -1;
     9         kx       return os;
     9         kx     }
     9         kx 
     9         kx   if (disp == Eh_frame::EH_END_MARKER_SECTION && !this->added_eh_frame_data_)
     9         kx     {
     9         kx       // We found the end marker section, so now we can add the set of
     9         kx       // optimized sections to the output section.  We need to postpone
     9         kx       // adding this until we've found a section we can optimize so that
     9         kx       // the .eh_frame section in crtbeginT.o winds up at the start of
     9         kx       // the output section.
     9         kx       os->add_output_section_data(this->eh_frame_data_);
     9         kx       this->added_eh_frame_data_ = true;
     9         kx      }
     9         kx 
     9         kx   // We couldn't handle this .eh_frame section for some reason.
     9         kx   // Add it as a normal section.
     9         kx   bool saw_sections_clause = this->script_options_->saw_sections_clause();
     9         kx   *off = os->add_input_section(this, object, shndx, ".eh_frame", shdr,
     9         kx 			       reloc_shndx, saw_sections_clause);
     9         kx   this->have_added_input_section_ = true;
     9         kx 
     9         kx   if ((orig_flags & (elfcpp::SHF_WRITE | elfcpp::SHF_EXECINSTR))
     9         kx       != (os->flags() & (elfcpp::SHF_WRITE | elfcpp::SHF_EXECINSTR)))
     9         kx     os->set_order(this->default_section_order(os, false));
     9         kx 
     9         kx   return os;
     9         kx }
     9         kx 
     9         kx void
     9         kx Layout::finalize_eh_frame_section()
     9         kx {
     9         kx   // If we never found an end marker section, we need to add the
     9         kx   // optimized eh sections to the output section now.
     9         kx   if (!parameters->incremental()
     9         kx       && this->eh_frame_section_ != NULL
     9         kx       && !this->added_eh_frame_data_)
     9         kx     {
     9         kx       this->eh_frame_section_->add_output_section_data(this->eh_frame_data_);
     9         kx       this->added_eh_frame_data_ = true;
     9         kx     }
     9         kx }
     9         kx 
     9         kx // Create and return the magic .eh_frame section.  Create
     9         kx // .eh_frame_hdr also if appropriate.  OBJECT is the object with the
     9         kx // input .eh_frame section; it may be NULL.
     9         kx 
     9         kx Output_section*
     9         kx Layout::make_eh_frame_section(const Relobj* object)
     9         kx {
     9         kx   const unsigned int unwind_section_type =
     9         kx       parameters->target().unwind_section_type();
     9         kx 
     9         kx   Output_section* os = this->choose_output_section(object, ".eh_frame",
     9         kx 						   unwind_section_type,
     9         kx 						   elfcpp::SHF_ALLOC, false,
     9         kx 						   ORDER_EHFRAME, false, false,
     9         kx 						   false);
     9         kx   if (os == NULL)
     9         kx     return NULL;
     9         kx 
     9         kx   if (this->eh_frame_section_ == NULL)
     9         kx     {
     9         kx       this->eh_frame_section_ = os;
     9         kx       this->eh_frame_data_ = new Eh_frame();
     9         kx 
     9         kx       // For incremental linking, we do not optimize .eh_frame sections
     9         kx       // or create a .eh_frame_hdr section.
     9         kx       if (parameters->options().eh_frame_hdr() && !parameters->incremental())
     9         kx 	{
     9         kx 	  Output_section* hdr_os =
     9         kx 	    this->choose_output_section(NULL, ".eh_frame_hdr",
     9         kx 					unwind_section_type,
     9         kx 					elfcpp::SHF_ALLOC, false,
     9         kx 					ORDER_EHFRAME, false, false,
     9         kx 					false);
     9         kx 
     9         kx 	  if (hdr_os != NULL)
     9         kx 	    {
     9         kx 	      Eh_frame_hdr* hdr_posd = new Eh_frame_hdr(os,
     9         kx 							this->eh_frame_data_);
     9         kx 	      hdr_os->add_output_section_data(hdr_posd);
     9         kx 
     9         kx 	      hdr_os->set_after_input_sections();
     9         kx 
     9         kx 	      if (!this->script_options_->saw_phdrs_clause())
     9         kx 		{
     9         kx 		  Output_segment* hdr_oseg;
     9         kx 		  hdr_oseg = this->make_output_segment(elfcpp::PT_GNU_EH_FRAME,
     9         kx 						       elfcpp::PF_R);
     9         kx 		  hdr_oseg->add_output_section_to_nonload(hdr_os,
     9         kx 							  elfcpp::PF_R);
     9         kx 		}
     9         kx 
     9         kx 	      this->eh_frame_data_->set_eh_frame_hdr(hdr_posd);
     9         kx 	    }
     9         kx 	}
     9         kx     }
     9         kx 
     9         kx   return os;
     9         kx }
     9         kx 
     9         kx // Add an exception frame for a PLT.  This is called from target code.
     9         kx 
     9         kx void
     9         kx Layout::add_eh_frame_for_plt(Output_data* plt, const unsigned char* cie_data,
     9         kx 			     size_t cie_length, const unsigned char* fde_data,
     9         kx 			     size_t fde_length)
     9         kx {
     9         kx   if (parameters->incremental())
     9         kx     {
     9         kx       // FIXME: Maybe this could work some day....
     9         kx       return;
     9         kx     }
     9         kx   Output_section* os = this->make_eh_frame_section(NULL);
     9         kx   if (os == NULL)
     9         kx     return;
     9         kx   this->eh_frame_data_->add_ehframe_for_plt(plt, cie_data, cie_length,
     9         kx 					    fde_data, fde_length);
     9         kx   if (!this->added_eh_frame_data_)
     9         kx     {
     9         kx       os->add_output_section_data(this->eh_frame_data_);
     9         kx       this->added_eh_frame_data_ = true;
     9         kx     }
     9         kx }
     9         kx 
     9         kx // Remove all post-map .eh_frame information for a PLT.
     9         kx 
     9         kx void
     9         kx Layout::remove_eh_frame_for_plt(Output_data* plt, const unsigned char* cie_data,
     9         kx 				size_t cie_length)
     9         kx {
     9         kx   if (parameters->incremental())
     9         kx     {
     9         kx       // FIXME: Maybe this could work some day....
     9         kx       return;
     9         kx     }
     9         kx   this->eh_frame_data_->remove_ehframe_for_plt(plt, cie_data, cie_length);
     9         kx }
     9         kx 
     9         kx // Scan a .debug_info or .debug_types section, and add summary
     9         kx // information to the .gdb_index section.
     9         kx 
     9         kx template<int size, bool big_endian>
     9         kx void
     9         kx Layout::add_to_gdb_index(bool is_type_unit,
     9         kx 			 Sized_relobj<size, big_endian>* object,
     9         kx 			 const unsigned char* symbols,
     9         kx 			 off_t symbols_size,
     9         kx 			 unsigned int shndx,
     9         kx 			 unsigned int reloc_shndx,
     9         kx 			 unsigned int reloc_type)
     9         kx {
     9         kx   if (this->gdb_index_data_ == NULL)
     9         kx     {
     9         kx       Output_section* os = this->choose_output_section(NULL, ".gdb_index",
     9         kx 						       elfcpp::SHT_PROGBITS, 0,
     9         kx 						       false, ORDER_INVALID,
     9         kx 						       false, false, false);
     9         kx       if (os == NULL)
     9         kx 	return;
     9         kx 
     9         kx       this->gdb_index_data_ = new Gdb_index(os);
     9         kx       os->add_output_section_data(this->gdb_index_data_);
     9         kx       os->set_after_input_sections();
     9         kx     }
     9         kx 
     9         kx   this->gdb_index_data_->scan_debug_info(is_type_unit, object, symbols,
     9         kx 					 symbols_size, shndx, reloc_shndx,
     9         kx 					 reloc_type);
     9         kx }
     9         kx 
     9         kx // Add POSD to an output section using NAME, TYPE, and FLAGS.  Return
     9         kx // the output section.
     9         kx 
     9         kx Output_section*
     9         kx Layout::add_output_section_data(const char* name, elfcpp::Elf_Word type,
     9         kx 				elfcpp::Elf_Xword flags,
     9         kx 				Output_section_data* posd,
     9         kx 				Output_section_order order, bool is_relro)
     9         kx {
     9         kx   Output_section* os = this->choose_output_section(NULL, name, type, flags,
     9         kx 						   false, order, is_relro,
     9         kx 						   false, false);
     9         kx   if (os != NULL)
     9         kx     os->add_output_section_data(posd);
     9         kx   return os;
     9         kx }
     9         kx 
     9         kx // Map section flags to segment flags.
     9         kx 
     9         kx elfcpp::Elf_Word
     9         kx Layout::section_flags_to_segment(elfcpp::Elf_Xword flags)
     9         kx {
     9         kx   elfcpp::Elf_Word ret = elfcpp::PF_R;
     9         kx   if ((flags & elfcpp::SHF_WRITE) != 0)
     9         kx     ret |= elfcpp::PF_W;
     9         kx   if ((flags & elfcpp::SHF_EXECINSTR) != 0)
     9         kx     ret |= elfcpp::PF_X;
     9         kx   return ret;
     9         kx }
     9         kx 
     9         kx // Make a new Output_section, and attach it to segments as
     9         kx // appropriate.  ORDER is the order in which this section should
     9         kx // appear in the output segment.  IS_RELRO is true if this is a relro
     9         kx // (read-only after relocations) section.
     9         kx 
     9         kx Output_section*
     9         kx Layout::make_output_section(const char* name, elfcpp::Elf_Word type,
     9         kx 			    elfcpp::Elf_Xword flags,
     9         kx 			    Output_section_order order, bool is_relro)
     9         kx {
     9         kx   Output_section* os;
     9         kx   if ((flags & elfcpp::SHF_ALLOC) == 0
     9         kx       && strcmp(parameters->options().compress_debug_sections(), "none") != 0
     9         kx       && is_compressible_debug_section(name))
     9         kx     os = new Output_compressed_section(&parameters->options(), name, type,
     9         kx 				       flags);
     9         kx   else if ((flags & elfcpp::SHF_ALLOC) == 0
     9         kx 	   && parameters->options().strip_debug_non_line()
     9         kx 	   && strcmp(".debug_abbrev", name) == 0)
     9         kx     {
     9         kx       os = this->debug_abbrev_ = new Output_reduced_debug_abbrev_section(
     9         kx 	  name, type, flags);
     9         kx       if (this->debug_info_)
     9         kx 	this->debug_info_->set_abbreviations(this->debug_abbrev_);
     9         kx     }
     9         kx   else if ((flags & elfcpp::SHF_ALLOC) == 0
     9         kx 	   && parameters->options().strip_debug_non_line()
     9         kx 	   && strcmp(".debug_info", name) == 0)
     9         kx     {
     9         kx       os = this->debug_info_ = new Output_reduced_debug_info_section(
     9         kx 	  name, type, flags);
     9         kx       if (this->debug_abbrev_)
     9         kx 	this->debug_info_->set_abbreviations(this->debug_abbrev_);
     9         kx     }
     9         kx   else
     9         kx     {
     9         kx       // Sometimes .init_array*, .preinit_array* and .fini_array* do
     9         kx       // not have correct section types.  Force them here.
     9         kx       if (type == elfcpp::SHT_PROGBITS)
     9         kx 	{
     9         kx 	  if (is_prefix_of(".init_array", name))
     9         kx 	    type = elfcpp::SHT_INIT_ARRAY;
     9         kx 	  else if (is_prefix_of(".preinit_array", name))
     9         kx 	    type = elfcpp::SHT_PREINIT_ARRAY;
     9         kx 	  else if (is_prefix_of(".fini_array", name))
     9         kx 	    type = elfcpp::SHT_FINI_ARRAY;
     9         kx 	}
     9         kx 
     9         kx       // FIXME: const_cast is ugly.
     9         kx       Target* target = const_cast<Target*>(&parameters->target());
     9         kx       os = target->make_output_section(name, type, flags);
     9         kx     }
     9         kx 
     9         kx   // With -z relro, we have to recognize the special sections by name.
     9         kx   // There is no other way.
     9         kx   bool is_relro_local = false;
     9         kx   if (!this->script_options_->saw_sections_clause()
     9         kx       && parameters->options().relro()
     9         kx       && (flags & elfcpp::SHF_ALLOC) != 0
     9         kx       && (flags & elfcpp::SHF_WRITE) != 0)
     9         kx     {
     9         kx       if (type == elfcpp::SHT_PROGBITS)
     9         kx 	{
     9         kx 	  if ((flags & elfcpp::SHF_TLS) != 0)
     9         kx 	    is_relro = true;
     9         kx 	  else if (strcmp(name, ".data.rel.ro") == 0)
     9         kx 	    is_relro = true;
     9         kx 	  else if (strcmp(name, ".data.rel.ro.local") == 0)
     9         kx 	    {
     9         kx 	      is_relro = true;
     9         kx 	      is_relro_local = true;
     9         kx 	    }
     9         kx 	  else if (strcmp(name, ".ctors") == 0
     9         kx 		   || strcmp(name, ".dtors") == 0
     9         kx 		   || strcmp(name, ".jcr") == 0)
     9         kx 	    is_relro = true;
     9         kx 	}
     9         kx       else if (type == elfcpp::SHT_INIT_ARRAY
     9         kx 	       || type == elfcpp::SHT_FINI_ARRAY
     9         kx 	       || type == elfcpp::SHT_PREINIT_ARRAY)
     9         kx 	is_relro = true;
     9         kx     }
     9         kx 
     9         kx   if (is_relro)
     9         kx     os->set_is_relro();
     9         kx 
     9         kx   if (order == ORDER_INVALID && (flags & elfcpp::SHF_ALLOC) != 0)
     9         kx     order = this->default_section_order(os, is_relro_local);
     9         kx 
     9         kx   os->set_order(order);
     9         kx 
     9         kx   parameters->target().new_output_section(os);
     9         kx 
     9         kx   this->section_list_.push_back(os);
     9         kx 
     9         kx   // The GNU linker by default sorts some sections by priority, so we
     9         kx   // do the same.  We need to know that this might happen before we
     9         kx   // attach any input sections.
     9         kx   if (!this->script_options_->saw_sections_clause()
     9         kx       && !parameters->options().relocatable()
     9         kx       && (strcmp(name, ".init_array") == 0
     9         kx 	  || strcmp(name, ".fini_array") == 0
     9         kx 	  || (!parameters->options().ctors_in_init_array()
     9         kx 	      && (strcmp(name, ".ctors") == 0
     9         kx 		  || strcmp(name, ".dtors") == 0))))
     9         kx     os->set_may_sort_attached_input_sections();
     9         kx 
     9         kx   // The GNU linker by default sorts .text.{unlikely,exit,startup,hot}
     9         kx   // sections before other .text sections.  We are compatible.  We
     9         kx   // need to know that this might happen before we attach any input
     9         kx   // sections.
     9         kx   if (parameters->options().text_reorder()
     9         kx       && !this->script_options_->saw_sections_clause()
     9         kx       && !this->is_section_ordering_specified()
     9         kx       && !parameters->options().relocatable()
     9         kx       && strcmp(name, ".text") == 0)
     9         kx     os->set_may_sort_attached_input_sections();
     9         kx 
     9         kx   // GNU linker sorts section by name with --sort-section=name.
     9         kx   if (strcmp(parameters->options().sort_section(), "name") == 0)
     9         kx       os->set_must_sort_attached_input_sections();
     9         kx 
     9         kx   // Check for .stab*str sections, as .stab* sections need to link to
     9         kx   // them.
     9         kx   if (type == elfcpp::SHT_STRTAB
     9         kx       && !this->have_stabstr_section_
     9         kx       && strncmp(name, ".stab", 5) == 0
     9         kx       && strcmp(name + strlen(name) - 3, "str") == 0)
     9         kx     this->have_stabstr_section_ = true;
     9         kx 
     9         kx   // During a full incremental link, we add patch space to most
     9         kx   // PROGBITS and NOBITS sections.  Flag those that may be
     9         kx   // arbitrarily padded.
     9         kx   if ((type == elfcpp::SHT_PROGBITS || type == elfcpp::SHT_NOBITS)
     9         kx       && order != ORDER_INTERP
     9         kx       && order != ORDER_INIT
     9         kx       && order != ORDER_PLT
     9         kx       && order != ORDER_FINI
     9         kx       && order != ORDER_RELRO_LAST
     9         kx       && order != ORDER_NON_RELRO_FIRST
     9         kx       && strcmp(name, ".eh_frame") != 0
     9         kx       && strcmp(name, ".ctors") != 0
     9         kx       && strcmp(name, ".dtors") != 0
     9         kx       && strcmp(name, ".jcr") != 0)
     9         kx     {
     9         kx       os->set_is_patch_space_allowed();
     9         kx 
     9         kx       // Certain sections require "holes" to be filled with
     9         kx       // specific fill patterns.  These fill patterns may have
     9         kx       // a minimum size, so we must prevent allocations from the
     9         kx       // free list that leave a hole smaller than the minimum.
     9         kx       if (strcmp(name, ".debug_info") == 0)
     9         kx 	os->set_free_space_fill(new Output_fill_debug_info(false));
     9         kx       else if (strcmp(name, ".debug_types") == 0)
     9         kx 	os->set_free_space_fill(new Output_fill_debug_info(true));
     9         kx       else if (strcmp(name, ".debug_line") == 0)
     9         kx 	os->set_free_space_fill(new Output_fill_debug_line());
     9         kx     }
     9         kx 
     9         kx   // If we have already attached the sections to segments, then we
     9         kx   // need to attach this one now.  This happens for sections created
     9         kx   // directly by the linker.
     9         kx   if (this->sections_are_attached_)
     9         kx     this->attach_section_to_segment(&parameters->target(), os);
     9         kx 
     9         kx   return os;
     9         kx }
     9         kx 
     9         kx // Return the default order in which a section should be placed in an
     9         kx // output segment.  This function captures a lot of the ideas in
     9         kx // ld/scripttempl/elf.sc in the GNU linker.  Note that the order of a
     9         kx // linker created section is normally set when the section is created;
     9         kx // this function is used for input sections.
     9         kx 
     9         kx Output_section_order
     9         kx Layout::default_section_order(Output_section* os, bool is_relro_local)
     9         kx {
     9         kx   gold_assert((os->flags() & elfcpp::SHF_ALLOC) != 0);
     9         kx   bool is_write = (os->flags() & elfcpp::SHF_WRITE) != 0;
     9         kx   bool is_execinstr = (os->flags() & elfcpp::SHF_EXECINSTR) != 0;
     9         kx   bool is_bss = false;
     9         kx 
     9         kx   switch (os->type())
     9         kx     {
     9         kx     default:
     9         kx     case elfcpp::SHT_PROGBITS:
     9         kx       break;
     9         kx     case elfcpp::SHT_NOBITS:
     9         kx       is_bss = true;
     9         kx       break;
     9         kx     case elfcpp::SHT_RELA:
     9         kx     case elfcpp::SHT_REL:
     9         kx       if (!is_write)
     9         kx 	return ORDER_DYNAMIC_RELOCS;
     9         kx       break;
     9         kx     case elfcpp::SHT_HASH:
     9         kx     case elfcpp::SHT_DYNAMIC:
     9         kx     case elfcpp::SHT_SHLIB:
     9         kx     case elfcpp::SHT_DYNSYM:
     9         kx     case elfcpp::SHT_GNU_HASH:
     9         kx     case elfcpp::SHT_GNU_verdef:
     9         kx     case elfcpp::SHT_GNU_verneed:
     9         kx     case elfcpp::SHT_GNU_versym:
     9         kx       if (!is_write)
     9         kx 	return ORDER_DYNAMIC_LINKER;
     9         kx       break;
     9         kx     case elfcpp::SHT_NOTE:
     9         kx       return is_write ? ORDER_RW_NOTE : ORDER_RO_NOTE;
     9         kx     }
     9         kx 
     9         kx   if ((os->flags() & elfcpp::SHF_TLS) != 0)
     9         kx     return is_bss ? ORDER_TLS_BSS : ORDER_TLS_DATA;
     9         kx 
     9         kx   if (!is_bss && !is_write)
     9         kx     {
     9         kx       if (is_execinstr)
     9         kx 	{
     9         kx 	  if (strcmp(os->name(), ".init") == 0)
     9         kx 	    return ORDER_INIT;
     9         kx 	  else if (strcmp(os->name(), ".fini") == 0)
     9         kx 	    return ORDER_FINI;
     9         kx 	  else if (parameters->options().keep_text_section_prefix())
     9         kx 	    {
     9         kx 	      // -z,keep-text-section-prefix introduces additional
     9         kx 	      // output sections.
     9         kx 	      if (strcmp(os->name(), ".text.hot") == 0)
     9         kx 		return ORDER_TEXT_HOT;
     9         kx 	      else if (strcmp(os->name(), ".text.startup") == 0)
     9         kx 		return ORDER_TEXT_STARTUP;
     9         kx 	      else if (strcmp(os->name(), ".text.exit") == 0)
     9         kx 		return ORDER_TEXT_EXIT;
     9         kx 	      else if (strcmp(os->name(), ".text.unlikely") == 0)
     9         kx 		return ORDER_TEXT_UNLIKELY;
     9         kx 	    }
     9         kx 	}
     9         kx       return is_execinstr ? ORDER_TEXT : ORDER_READONLY;
     9         kx     }
     9         kx 
     9         kx   if (os->is_relro())
     9         kx     return is_relro_local ? ORDER_RELRO_LOCAL : ORDER_RELRO;
     9         kx 
     9         kx   if (os->is_small_section())
     9         kx     return is_bss ? ORDER_SMALL_BSS : ORDER_SMALL_DATA;
     9         kx   if (os->is_large_section())
     9         kx     return is_bss ? ORDER_LARGE_BSS : ORDER_LARGE_DATA;
     9         kx 
     9         kx   return is_bss ? ORDER_BSS : ORDER_DATA;
     9         kx }
     9         kx 
     9         kx // Attach output sections to segments.  This is called after we have
     9         kx // seen all the input sections.
     9         kx 
     9         kx void
     9         kx Layout::attach_sections_to_segments(const Target* target)
     9         kx {
     9         kx   for (Section_list::iterator p = this->section_list_.begin();
     9         kx        p != this->section_list_.end();
     9         kx        ++p)
     9         kx     this->attach_section_to_segment(target, *p);
     9         kx 
     9         kx   this->sections_are_attached_ = true;
     9         kx }
     9         kx 
     9         kx // Attach an output section to a segment.
     9         kx 
     9         kx void
     9         kx Layout::attach_section_to_segment(const Target* target, Output_section* os)
     9         kx {
     9         kx   if ((os->flags() & elfcpp::SHF_ALLOC) == 0)
     9         kx     this->unattached_section_list_.push_back(os);
     9         kx   else
     9         kx     this->attach_allocated_section_to_segment(target, os);
     9         kx }
     9         kx 
     9         kx // Attach an allocated output section to a segment.
     9         kx 
     9         kx void
     9         kx Layout::attach_allocated_section_to_segment(const Target* target,
     9         kx 					    Output_section* os)
     9         kx {
     9         kx   elfcpp::Elf_Xword flags = os->flags();
     9         kx   gold_assert((flags & elfcpp::SHF_ALLOC) != 0);
     9         kx 
     9         kx   if (parameters->options().relocatable())
     9         kx     return;
     9         kx 
     9         kx   // If we have a SECTIONS clause, we can't handle the attachment to
     9         kx   // segments until after we've seen all the sections.
     9         kx   if (this->script_options_->saw_sections_clause())
     9         kx     return;
     9         kx 
     9         kx   gold_assert(!this->script_options_->saw_phdrs_clause());
     9         kx 
     9         kx   // This output section goes into a PT_LOAD segment.
     9         kx 
     9         kx   elfcpp::Elf_Word seg_flags = Layout::section_flags_to_segment(flags);
     9         kx 
     9         kx   // If this output section's segment has extra flags that need to be set,
     9         kx   // coming from a linker plugin, do that.
     9         kx   seg_flags |= os->extra_segment_flags();
     9         kx 
     9         kx   // Check for --section-start.
     9         kx   uint64_t addr;
     9         kx   bool is_address_set = parameters->options().section_start(os->name(), &addr);
     9         kx 
     9         kx   // In general the only thing we really care about for PT_LOAD
     9         kx   // segments is whether or not they are writable or executable,
     9         kx   // so that is how we search for them.
     9         kx   // Large data sections also go into their own PT_LOAD segment.
     9         kx   // People who need segments sorted on some other basis will
     9         kx   // have to use a linker script.
     9         kx 
     9         kx   Segment_list::const_iterator p;
     9         kx   if (!os->is_unique_segment())
     9         kx     {
     9         kx       for (p = this->segment_list_.begin();
     9         kx 	   p != this->segment_list_.end();
     9         kx 	   ++p)
     9         kx 	{
     9         kx 	  if ((*p)->type() != elfcpp::PT_LOAD)
     9         kx 	    continue;
     9         kx 	  if ((*p)->is_unique_segment())
     9         kx 	    continue;
     9         kx 	  if (!parameters->options().omagic()
     9         kx 	      && ((*p)->flags() & elfcpp::PF_W) != (seg_flags & elfcpp::PF_W))
     9         kx 	    continue;
     9         kx 	  if ((target->isolate_execinstr() || parameters->options().rosegment())
     9         kx 	      && ((*p)->flags() & elfcpp::PF_X) != (seg_flags & elfcpp::PF_X))
     9         kx 	    continue;
     9         kx 	  // If -Tbss was specified, we need to separate the data and BSS
     9         kx 	  // segments.
     9         kx 	  if (parameters->options().user_set_Tbss())
     9         kx 	    {
     9         kx 	      if ((os->type() == elfcpp::SHT_NOBITS)
     9         kx 		  == (*p)->has_any_data_sections())
     9         kx 		continue;
     9         kx 	    }
     9         kx 	  if (os->is_large_data_section() && !(*p)->is_large_data_segment())
     9         kx 	    continue;
     9         kx 
     9         kx 	  if (is_address_set)
     9         kx 	    {
     9         kx 	      if ((*p)->are_addresses_set())
     9         kx 		continue;
     9         kx 
     9         kx 	      (*p)->add_initial_output_data(os);
     9         kx 	      (*p)->update_flags_for_output_section(seg_flags);
     9         kx 	      (*p)->set_addresses(addr, addr);
     9         kx 	      break;
     9         kx 	    }
     9         kx 
     9         kx 	  (*p)->add_output_section_to_load(this, os, seg_flags);
     9         kx 	  break;
     9         kx 	}
     9         kx     }
     9         kx 
     9         kx   if (p == this->segment_list_.end()
     9         kx       || os->is_unique_segment())
     9         kx     {
     9         kx       Output_segment* oseg = this->make_output_segment(elfcpp::PT_LOAD,
     9         kx 						       seg_flags);
     9         kx       if (os->is_large_data_section())
     9         kx 	oseg->set_is_large_data_segment();
     9         kx       oseg->add_output_section_to_load(this, os, seg_flags);
     9         kx       if (is_address_set)
     9         kx 	oseg->set_addresses(addr, addr);
     9         kx       // Check if segment should be marked unique.  For segments marked
     9         kx       // unique by linker plugins, set the new alignment if specified.
     9         kx       if (os->is_unique_segment())
     9         kx 	{
     9         kx 	  oseg->set_is_unique_segment();
     9         kx 	  if (os->segment_alignment() != 0)
     9         kx 	    oseg->set_minimum_p_align(os->segment_alignment());
     9         kx 	}
     9         kx     }
     9         kx 
     9         kx   // If we see a loadable SHT_NOTE section, we create a PT_NOTE
     9         kx   // segment.
     9         kx   if (os->type() == elfcpp::SHT_NOTE)
     9         kx     {
     9         kx       uint64_t os_align = os->addralign();
     9         kx 
     9         kx       // See if we already have an equivalent PT_NOTE segment.
     9         kx       for (p = this->segment_list_.begin();
     9         kx 	   p != segment_list_.end();
     9         kx 	   ++p)
     9         kx 	{
     9         kx 	  if ((*p)->type() == elfcpp::PT_NOTE
     9         kx 	      && (*p)->align() == os_align
     9         kx 	      && (((*p)->flags() & elfcpp::PF_W)
     9         kx 		  == (seg_flags & elfcpp::PF_W)))
     9         kx 	    {
     9         kx 	      (*p)->add_output_section_to_nonload(os, seg_flags);
     9         kx 	      break;
     9         kx 	    }
     9         kx 	}
     9         kx 
     9         kx       if (p == this->segment_list_.end())
     9         kx 	{
     9         kx 	  Output_segment* oseg = this->make_output_segment(elfcpp::PT_NOTE,
     9         kx 							   seg_flags);
     9         kx 	  oseg->add_output_section_to_nonload(os, seg_flags);
     9         kx 	  oseg->set_align(os_align);
     9         kx 	}
     9         kx     }
     9         kx 
     9         kx   // If we see a loadable SHF_TLS section, we create a PT_TLS
     9         kx   // segment.  There can only be one such segment.
     9         kx   if ((flags & elfcpp::SHF_TLS) != 0)
     9         kx     {
     9         kx       if (this->tls_segment_ == NULL)
     9         kx 	this->make_output_segment(elfcpp::PT_TLS, seg_flags);
     9         kx       this->tls_segment_->add_output_section_to_nonload(os, seg_flags);
     9         kx     }
     9         kx 
     9         kx   // If -z relro is in effect, and we see a relro section, we create a
     9         kx   // PT_GNU_RELRO segment.  There can only be one such segment.
     9         kx   if (os->is_relro() && parameters->options().relro())
     9         kx     {
     9         kx       gold_assert(seg_flags == (elfcpp::PF_R | elfcpp::PF_W));
     9         kx       if (this->relro_segment_ == NULL)
     9         kx 	this->make_output_segment(elfcpp::PT_GNU_RELRO, seg_flags);
     9         kx       this->relro_segment_->add_output_section_to_nonload(os, seg_flags);
     9         kx     }
     9         kx 
     9         kx   // If we see a section named .interp, put it into a PT_INTERP
     9         kx   // segment.  This seems broken to me, but this is what GNU ld does,
     9         kx   // and glibc expects it.
     9         kx   if (strcmp(os->name(), ".interp") == 0
     9         kx       && !this->script_options_->saw_phdrs_clause())
     9         kx     {
     9         kx       if (this->interp_segment_ == NULL)
     9         kx 	this->make_output_segment(elfcpp::PT_INTERP, seg_flags);
     9         kx       else
     9         kx 	gold_warning(_("multiple '.interp' sections in input files "
     9         kx 		       "may cause confusing PT_INTERP segment"));
     9         kx       this->interp_segment_->add_output_section_to_nonload(os, seg_flags);
     9         kx     }
     9         kx }
     9         kx 
     9         kx // Make an output section for a script.
     9         kx 
     9         kx Output_section*
     9         kx Layout::make_output_section_for_script(
     9         kx     const char* name,
     9         kx     Script_sections::Section_type section_type)
     9         kx {
     9         kx   name = this->namepool_.add(name, false, NULL);
     9         kx   elfcpp::Elf_Xword sh_flags = elfcpp::SHF_ALLOC;
     9         kx   if (section_type == Script_sections::ST_NOLOAD)
     9         kx     sh_flags = 0;
     9         kx   Output_section* os = this->make_output_section(name, elfcpp::SHT_PROGBITS,
     9         kx 						 sh_flags, ORDER_INVALID,
     9         kx 						 false);
     9         kx   os->set_found_in_sections_clause();
     9         kx   if (section_type == Script_sections::ST_NOLOAD)
     9         kx     os->set_is_noload();
     9         kx   return os;
     9         kx }
     9         kx 
     9         kx // Return the number of segments we expect to see.
     9         kx 
     9         kx size_t
     9         kx Layout::expected_segment_count() const
     9         kx {
     9         kx   size_t ret = this->segment_list_.size();
     9         kx 
     9         kx   // If we didn't see a SECTIONS clause in a linker script, we should
     9         kx   // already have the complete list of segments.  Otherwise we ask the
     9         kx   // SECTIONS clause how many segments it expects, and add in the ones
     9         kx   // we already have (PT_GNU_STACK, PT_GNU_EH_FRAME, etc.)
     9         kx 
     9         kx   if (!this->script_options_->saw_sections_clause())
     9         kx     return ret;
     9         kx   else
     9         kx     {
     9         kx       const Script_sections* ss = this->script_options_->script_sections();
     9         kx       return ret + ss->expected_segment_count(this);
     9         kx     }
     9         kx }
     9         kx 
     9         kx // Handle the .note.GNU-stack section at layout time.  SEEN_GNU_STACK
     9         kx // is whether we saw a .note.GNU-stack section in the object file.
     9         kx // GNU_STACK_FLAGS is the section flags.  The flags give the
     9         kx // protection required for stack memory.  We record this in an
     9         kx // executable as a PT_GNU_STACK segment.  If an object file does not
     9         kx // have a .note.GNU-stack segment, we must assume that it is an old
     9         kx // object.  On some targets that will force an executable stack.
     9         kx 
     9         kx void
     9         kx Layout::layout_gnu_stack(bool seen_gnu_stack, uint64_t gnu_stack_flags,
     9         kx 			 const Object* obj)
     9         kx {
     9         kx   if (!seen_gnu_stack)
     9         kx     {
     9         kx       this->input_without_gnu_stack_note_ = true;
     9         kx       if (parameters->options().warn_execstack()
     9         kx 	  && parameters->target().is_default_stack_executable())
     9         kx 	gold_warning(_("%s: missing .note.GNU-stack section"
     9         kx 		       " implies executable stack"),
     9         kx 		     obj->name().c_str());
     9         kx     }
     9         kx   else
     9         kx     {
     9         kx       this->input_with_gnu_stack_note_ = true;
     9         kx       if ((gnu_stack_flags & elfcpp::SHF_EXECINSTR) != 0)
     9         kx 	{
     9         kx 	  this->input_requires_executable_stack_ = true;
     9         kx 	  if (parameters->options().warn_execstack())
     9         kx 	    gold_warning(_("%s: requires executable stack"),
     9         kx 			 obj->name().c_str());
     9         kx 	}
     9         kx     }
     9         kx }
     9         kx 
     9         kx // Read a value with given size and endianness.
     9         kx 
     9         kx static inline uint64_t
     9         kx read_sized_value(size_t size, const unsigned char* buf, bool is_big_endian,
     9         kx 		 const Object* object)
     9         kx {
     9         kx   uint64_t val = 0;
     9         kx   if (size == 4)
     9         kx     {
     9         kx       if (is_big_endian)
     9         kx 	val = elfcpp::Swap<32, true>::readval(buf);
     9         kx       else
     9         kx 	val = elfcpp::Swap<32, false>::readval(buf);
     9         kx     }
     9         kx   else if (size == 8)
     9         kx     {
     9         kx       if (is_big_endian)
     9         kx 	val = elfcpp::Swap<64, true>::readval(buf);
     9         kx       else
     9         kx 	val = elfcpp::Swap<64, false>::readval(buf);
     9         kx     }
     9         kx   else
     9         kx     {
     9         kx       gold_warning(_("%s: in .note.gnu.property section, "
     9         kx 		     "pr_datasz must be 4 or 8"),
     9         kx 		   object->name().c_str());
     9         kx     }
     9         kx   return val;
     9         kx }
     9         kx 
     9         kx // Write a value with given size and endianness.
     9         kx 
     9         kx static inline void
     9         kx write_sized_value(uint64_t value, size_t size, unsigned char* buf,
     9         kx 		  bool is_big_endian)
     9         kx {
     9         kx   if (size == 4)
     9         kx     {
     9         kx       if (is_big_endian)
     9         kx 	elfcpp::Swap<32, true>::writeval(buf, static_cast<uint32_t>(value));
     9         kx       else
     9         kx 	elfcpp::Swap<32, false>::writeval(buf, static_cast<uint32_t>(value));
     9         kx     }
     9         kx   else if (size == 8)
     9         kx     {
     9         kx       if (is_big_endian)
     9         kx 	elfcpp::Swap<64, true>::writeval(buf, value);
     9         kx       else
     9         kx 	elfcpp::Swap<64, false>::writeval(buf, value);
     9         kx     }
     9         kx   else
     9         kx     {
     9         kx       // We will have already complained about this.
     9         kx     }
     9         kx }
     9         kx 
     9         kx // Handle the .note.gnu.property section at layout time.
     9         kx 
     9         kx void
     9         kx Layout::layout_gnu_property(unsigned int note_type,
     9         kx 			    unsigned int pr_type,
     9         kx 			    size_t pr_datasz,
     9         kx 			    const unsigned char* pr_data,
     9         kx 			    const Object* object)
     9         kx {
     9         kx   // We currently support only the one note type.
     9         kx   gold_assert(note_type == elfcpp::NT_GNU_PROPERTY_TYPE_0);
     9         kx 
     9         kx   if (pr_type >= elfcpp::GNU_PROPERTY_LOPROC
     9         kx       && pr_type < elfcpp::GNU_PROPERTY_HIPROC)
     9         kx     {
     9         kx       // Target-dependent property value; call the target to record.
     9         kx       const int size = parameters->target().get_size();
     9         kx       const bool is_big_endian = parameters->target().is_big_endian();
     9         kx       if (size == 32)
     9         kx 	{
     9         kx 	  if (is_big_endian)
     9         kx 	    {
     9         kx #ifdef HAVE_TARGET_32_BIG
     9         kx 	      parameters->sized_target<32, true>()->
     9         kx 		  record_gnu_property(note_type, pr_type, pr_datasz, pr_data,
     9         kx 				      object);
     9         kx #else
     9         kx 	      gold_unreachable();
     9         kx #endif
     9         kx 	    }
     9         kx 	  else
     9         kx 	    {
     9         kx #ifdef HAVE_TARGET_32_LITTLE
     9         kx 	      parameters->sized_target<32, false>()->
     9         kx 		  record_gnu_property(note_type, pr_type, pr_datasz, pr_data,
     9         kx 				      object);
     9         kx #else
     9         kx 	      gold_unreachable();
     9         kx #endif
     9         kx 	    }
     9         kx 	}
     9         kx       else if (size == 64)
     9         kx 	{
     9         kx 	  if (is_big_endian)
     9         kx 	    {
     9         kx #ifdef HAVE_TARGET_64_BIG
     9         kx 	      parameters->sized_target<64, true>()->
     9         kx 		  record_gnu_property(note_type, pr_type, pr_datasz, pr_data,
     9         kx 				      object);
     9         kx #else
     9         kx 	      gold_unreachable();
     9         kx #endif
     9         kx 	    }
     9         kx 	  else
     9         kx 	    {
     9         kx #ifdef HAVE_TARGET_64_LITTLE
     9         kx 	      parameters->sized_target<64, false>()->
     9         kx 		  record_gnu_property(note_type, pr_type, pr_datasz, pr_data,
     9         kx 				      object);
     9         kx #else
     9         kx 	      gold_unreachable();
     9         kx #endif
     9         kx 	    }
     9         kx 	}
     9         kx       else
     9         kx 	gold_unreachable();
     9         kx       return;
     9         kx     }
     9         kx 
     9         kx   Gnu_properties::iterator pprop = this->gnu_properties_.find(pr_type);
     9         kx   if (pprop == this->gnu_properties_.end())
     9         kx     {
     9         kx       Gnu_property prop;
     9         kx       prop.pr_datasz = pr_datasz;
     9         kx       prop.pr_data = new unsigned char[pr_datasz];
     9         kx       memcpy(prop.pr_data, pr_data, pr_datasz);
     9         kx       this->gnu_properties_[pr_type] = prop;
     9         kx     }
     9         kx   else
     9         kx     {
     9         kx       const bool is_big_endian = parameters->target().is_big_endian();
     9         kx       switch (pr_type)
     9         kx 	{
     9         kx 	case elfcpp::GNU_PROPERTY_STACK_SIZE:
     9         kx 	  // Record the maximum value seen.
     9         kx 	  {
     9         kx 	    uint64_t val1 = read_sized_value(pprop->second.pr_datasz,
     9         kx 					     pprop->second.pr_data,
     9         kx 					     is_big_endian, object);
     9         kx 	    uint64_t val2 = read_sized_value(pr_datasz, pr_data,
     9         kx 					     is_big_endian, object);
     9         kx 	    if (val2 > val1)
     9         kx 	      write_sized_value(val2, pprop->second.pr_datasz,
     9         kx 				pprop->second.pr_data, is_big_endian);
     9         kx 	  }
     9         kx 	  break;
     9         kx 	case elfcpp::GNU_PROPERTY_NO_COPY_ON_PROTECTED:
     9         kx 	  // No data to merge.
     9         kx 	  break;
     9         kx 	default:
     9         kx 	  gold_warning(_("%s: unknown program property type %d "
     9         kx 			 "in .note.gnu.property section"),
     9         kx 		       object->name().c_str(), pr_type);
     9         kx 	}
     9         kx     }
     9         kx }
     9         kx 
     9         kx // Merge per-object properties with program properties.
     9         kx // This lets the target identify objects that are missing certain
     9         kx // properties, in cases where properties must be ANDed together.
     9         kx 
     9         kx void
     9         kx Layout::merge_gnu_properties(const Object* object)
     9         kx {
     9         kx   const int size = parameters->target().get_size();
     9         kx   const bool is_big_endian = parameters->target().is_big_endian();
     9         kx   if (size == 32)
     9         kx     {
     9         kx       if (is_big_endian)
     9         kx 	{
     9         kx #ifdef HAVE_TARGET_32_BIG
     9         kx 	  parameters->sized_target<32, true>()->merge_gnu_properties(object);
     9         kx #else
     9         kx 	  gold_unreachable();
     9         kx #endif
     9         kx 	}
     9         kx       else
     9         kx 	{
     9         kx #ifdef HAVE_TARGET_32_LITTLE
     9         kx 	  parameters->sized_target<32, false>()->merge_gnu_properties(object);
     9         kx #else
     9         kx 	  gold_unreachable();
     9         kx #endif
     9         kx 	}
     9         kx     }
     9         kx   else if (size == 64)
     9         kx     {
     9         kx       if (is_big_endian)
     9         kx 	{
     9         kx #ifdef HAVE_TARGET_64_BIG
     9         kx 	  parameters->sized_target<64, true>()->merge_gnu_properties(object);
     9         kx #else
     9         kx 	  gold_unreachable();
     9         kx #endif
     9         kx 	}
     9         kx       else
     9         kx 	{
     9         kx #ifdef HAVE_TARGET_64_LITTLE
     9         kx 	  parameters->sized_target<64, false>()->merge_gnu_properties(object);
     9         kx #else
     9         kx 	  gold_unreachable();
     9         kx #endif
     9         kx 	}
     9         kx     }
     9         kx   else
     9         kx     gold_unreachable();
     9         kx }
     9         kx 
     9         kx // Add a target-specific property for the output .note.gnu.property section.
     9         kx 
     9         kx void
     9         kx Layout::add_gnu_property(unsigned int note_type,
     9         kx 			 unsigned int pr_type,
     9         kx 			 size_t pr_datasz,
     9         kx 			 const unsigned char* pr_data)
     9         kx {
     9         kx   gold_assert(note_type == elfcpp::NT_GNU_PROPERTY_TYPE_0);
     9         kx 
     9         kx   Gnu_property prop;
     9         kx   prop.pr_datasz = pr_datasz;
     9         kx   prop.pr_data = new unsigned char[pr_datasz];
     9         kx   memcpy(prop.pr_data, pr_data, pr_datasz);
     9         kx   this->gnu_properties_[pr_type] = prop;
     9         kx }
     9         kx 
     9         kx // Create automatic note sections.
     9         kx 
     9         kx void
     9         kx Layout::create_notes()
     9         kx {
     9         kx   this->create_gnu_properties_note();
     9         kx   this->create_gold_note();
     9         kx   this->create_stack_segment();
     9         kx   this->create_build_id();
     9         kx   this->create_package_metadata();
     9         kx }
     9         kx 
     9         kx // Create the dynamic sections which are needed before we read the
     9         kx // relocs.
     9         kx 
     9         kx void
     9         kx Layout::create_initial_dynamic_sections(Symbol_table* symtab)
     9         kx {
     9         kx   if (parameters->doing_static_link())
     9         kx     return;
     9         kx 
     9         kx   this->dynamic_section_ = this->choose_output_section(NULL, ".dynamic",
     9         kx 						       elfcpp::SHT_DYNAMIC,
     9         kx 						       (elfcpp::SHF_ALLOC
     9         kx 							| elfcpp::SHF_WRITE),
     9         kx 						       false, ORDER_RELRO,
     9         kx 						       true, false, false);
     9         kx 
     9         kx   // A linker script may discard .dynamic, so check for NULL.
     9         kx   if (this->dynamic_section_ != NULL)
     9         kx     {
     9         kx       this->dynamic_symbol_ =
     9         kx 	symtab->define_in_output_data("_DYNAMIC", NULL,
     9         kx 				      Symbol_table::PREDEFINED,
     9         kx 				      this->dynamic_section_, 0, 0,
     9         kx 				      elfcpp::STT_OBJECT, elfcpp::STB_LOCAL,
     9         kx 				      elfcpp::STV_HIDDEN, 0, false, false);
     9         kx 
     9         kx       this->dynamic_data_ =  new Output_data_dynamic(&this->dynpool_);
     9         kx 
     9         kx       this->dynamic_section_->add_output_section_data(this->dynamic_data_);
     9         kx     }
     9         kx }
     9         kx 
     9         kx // For each output section whose name can be represented as C symbol,
     9         kx // define __start and __stop symbols for the section.  This is a GNU
     9         kx // extension.
     9         kx 
     9         kx void
     9         kx Layout::define_section_symbols(Symbol_table* symtab)
     9         kx {
     9         kx   const elfcpp::STV visibility = parameters->options().start_stop_visibility_enum();
     9         kx   for (Section_list::const_iterator p = this->section_list_.begin();
     9         kx        p != this->section_list_.end();
     9         kx        ++p)
     9         kx     {
     9         kx       const char* const name = (*p)->name();
     9         kx       if (is_cident(name))
     9         kx 	{
     9         kx 	  const std::string name_string(name);
     9         kx 	  const std::string start_name(cident_section_start_prefix
     9         kx 				       + name_string);
     9         kx 	  const std::string stop_name(cident_section_stop_prefix
     9         kx 				      + name_string);
     9         kx 
     9         kx 	  symtab->define_in_output_data(start_name.c_str(),
     9         kx 					NULL, // version
     9         kx 					Symbol_table::PREDEFINED,
     9         kx 					*p,
     9         kx 					0, // value
     9         kx 					0, // symsize
     9         kx 					elfcpp::STT_NOTYPE,
     9         kx 					elfcpp::STB_GLOBAL,
     9         kx 					visibility,
     9         kx 					0, // nonvis
     9         kx 					false, // offset_is_from_end
     9         kx 					true); // only_if_ref
     9         kx 
     9         kx 	  symtab->define_in_output_data(stop_name.c_str(),
     9         kx 					NULL, // version
     9         kx 					Symbol_table::PREDEFINED,
     9         kx 					*p,
     9         kx 					0, // value
     9         kx 					0, // symsize
     9         kx 					elfcpp::STT_NOTYPE,
     9         kx 					elfcpp::STB_GLOBAL,
     9         kx 					visibility,
     9         kx 					0, // nonvis
     9         kx 					true, // offset_is_from_end
     9         kx 					true); // only_if_ref
     9         kx 	}
     9         kx     }
     9         kx }
     9         kx 
     9         kx // Define symbols for group signatures.
     9         kx 
     9         kx void
     9         kx Layout::define_group_signatures(Symbol_table* symtab)
     9         kx {
     9         kx   for (Group_signatures::iterator p = this->group_signatures_.begin();
     9         kx        p != this->group_signatures_.end();
     9         kx        ++p)
     9         kx     {
     9         kx       Symbol* sym = symtab->lookup(p->signature, NULL);
     9         kx       if (sym != NULL)
     9         kx 	p->section->set_info_symndx(sym);
     9         kx       else
     9         kx 	{
     9         kx 	  // Force the name of the group section to the group
     9         kx 	  // signature, and use the group's section symbol as the
     9         kx 	  // signature symbol.
     9         kx 	  if (strcmp(p->section->name(), p->signature) != 0)
     9         kx 	    {
     9         kx 	      const char* name = this->namepool_.add(p->signature,
     9         kx 						     true, NULL);
     9         kx 	      p->section->set_name(name);
     9         kx 	    }
     9         kx 	  p->section->set_needs_symtab_index();
     9         kx 	  p->section->set_info_section_symndx(p->section);
     9         kx 	}
     9         kx     }
     9         kx 
     9         kx   this->group_signatures_.clear();
     9         kx }
     9         kx 
     9         kx // Find the first read-only PT_LOAD segment, creating one if
     9         kx // necessary.
     9         kx 
     9         kx Output_segment*
     9         kx Layout::find_first_load_seg(const Target* target)
     9         kx {
     9         kx   Output_segment* best = NULL;
     9         kx   for (Segment_list::const_iterator p = this->segment_list_.begin();
     9         kx        p != this->segment_list_.end();
     9         kx        ++p)
     9         kx     {
     9         kx       if ((*p)->type() == elfcpp::PT_LOAD
     9         kx 	  && ((*p)->flags() & elfcpp::PF_R) != 0
     9         kx 	  && (parameters->options().omagic()
     9         kx 	      || ((*p)->flags() & elfcpp::PF_W) == 0)
     9         kx 	  && (!target->isolate_execinstr()
     9         kx 	      || ((*p)->flags() & elfcpp::PF_X) == 0))
     9         kx 	{
     9         kx 	  if (best == NULL || this->segment_precedes(*p, best))
     9         kx 	    best = *p;
     9         kx 	}
     9         kx     }
     9         kx   if (best != NULL)
     9         kx     return best;
     9         kx 
     9         kx   gold_assert(!this->script_options_->saw_phdrs_clause());
     9         kx 
     9         kx   Output_segment* load_seg = this->make_output_segment(elfcpp::PT_LOAD,
     9         kx 						       elfcpp::PF_R);
     9         kx   return load_seg;
     9         kx }
     9         kx 
     9         kx // Save states of all current output segments.  Store saved states
     9         kx // in SEGMENT_STATES.
     9         kx 
     9         kx void
     9         kx Layout::save_segments(Segment_states* segment_states)
     9         kx {
     9         kx   for (Segment_list::const_iterator p = this->segment_list_.begin();
     9         kx        p != this->segment_list_.end();
     9         kx        ++p)
     9         kx     {
     9         kx       Output_segment* segment = *p;
     9         kx       // Shallow copy.
     9         kx       Output_segment* copy = new Output_segment(*segment);
     9         kx       (*segment_states)[segment] = copy;
     9         kx     }
     9         kx }
     9         kx 
     9         kx // Restore states of output segments and delete any segment not found in
     9         kx // SEGMENT_STATES.
     9         kx 
     9         kx void
     9         kx Layout::restore_segments(const Segment_states* segment_states)
     9         kx {
     9         kx   // Go through the segment list and remove any segment added in the
     9         kx   // relaxation loop.
     9         kx   this->tls_segment_ = NULL;
     9         kx   this->relro_segment_ = NULL;
     9         kx   Segment_list::iterator list_iter = this->segment_list_.begin();
     9         kx   while (list_iter != this->segment_list_.end())
     9         kx     {
     9         kx       Output_segment* segment = *list_iter;
     9         kx       Segment_states::const_iterator states_iter =
     9         kx 	  segment_states->find(segment);
     9         kx       if (states_iter != segment_states->end())
     9         kx 	{
     9         kx 	  const Output_segment* copy = states_iter->second;
     9         kx 	  // Shallow copy to restore states.
     9         kx 	  *segment = *copy;
     9         kx 
     9         kx 	  // Also fix up TLS and RELRO segment pointers as appropriate.
     9         kx 	  if (segment->type() == elfcpp::PT_TLS)
     9         kx 	    this->tls_segment_ = segment;
     9         kx 	  else if (segment->type() == elfcpp::PT_GNU_RELRO)
     9         kx 	    this->relro_segment_ = segment;
     9         kx 
     9         kx 	  ++list_iter;
     9         kx 	}
     9         kx       else
     9         kx 	{
     9         kx 	  list_iter = this->segment_list_.erase(list_iter);
     9         kx 	  // This is a segment created during section layout.  It should be
     9         kx 	  // safe to remove it since we should have removed all pointers to it.
     9         kx 	  delete segment;
     9         kx 	}
     9         kx     }
     9         kx }
     9         kx 
     9         kx // Clean up after relaxation so that sections can be laid out again.
     9         kx 
     9         kx void
     9         kx Layout::clean_up_after_relaxation()
     9         kx {
     9         kx   // Restore the segments to point state just prior to the relaxation loop.
     9         kx   Script_sections* script_section = this->script_options_->script_sections();
     9         kx   script_section->release_segments();
     9         kx   this->restore_segments(this->segment_states_);
     9         kx 
     9         kx   // Reset section addresses and file offsets
     9         kx   for (Section_list::iterator p = this->section_list_.begin();
     9         kx        p != this->section_list_.end();
     9         kx        ++p)
     9         kx     {
     9         kx       (*p)->restore_states();
     9         kx 
     9         kx       // If an input section changes size because of relaxation,
     9         kx       // we need to adjust the section offsets of all input sections.
     9         kx       // after such a section.
     9         kx       if ((*p)->section_offsets_need_adjustment())
     9         kx 	(*p)->adjust_section_offsets();
     9         kx 
     9         kx       (*p)->reset_address_and_file_offset();
     9         kx     }
     9         kx 
     9         kx   // Reset special output object address and file offsets.
     9         kx   for (Data_list::iterator p = this->special_output_list_.begin();
     9         kx        p != this->special_output_list_.end();
     9         kx        ++p)
     9         kx     (*p)->reset_address_and_file_offset();
     9         kx 
     9         kx   // A linker script may have created some output section data objects.
     9         kx   // They are useless now.
     9         kx   for (Output_section_data_list::const_iterator p =
     9         kx 	 this->script_output_section_data_list_.begin();
     9         kx        p != this->script_output_section_data_list_.end();
     9         kx        ++p)
     9         kx     delete *p;
     9         kx   this->script_output_section_data_list_.clear();
     9         kx 
     9         kx   // Special-case fill output objects are recreated each time through
     9         kx   // the relaxation loop.
     9         kx   this->reset_relax_output();
     9         kx }
     9         kx 
     9         kx void
     9         kx Layout::reset_relax_output()
     9         kx {
     9         kx   for (Data_list::const_iterator p = this->relax_output_list_.begin();
     9         kx        p != this->relax_output_list_.end();
     9         kx        ++p)
     9         kx     delete *p;
     9         kx   this->relax_output_list_.clear();
     9         kx }
     9         kx 
     9         kx // Prepare for relaxation.
     9         kx 
     9         kx void
     9         kx Layout::prepare_for_relaxation()
     9         kx {
     9         kx   // Create an relaxation debug check if in debugging mode.
     9         kx   if (is_debugging_enabled(DEBUG_RELAXATION))
     9         kx     this->relaxation_debug_check_ = new Relaxation_debug_check();
     9         kx 
     9         kx   // Save segment states.
     9         kx   this->segment_states_ = new Segment_states();
     9         kx   this->save_segments(this->segment_states_);
     9         kx 
     9         kx   for(Section_list::const_iterator p = this->section_list_.begin();
     9         kx       p != this->section_list_.end();
     9         kx       ++p)
     9         kx     (*p)->save_states();
     9         kx 
     9         kx   if (is_debugging_enabled(DEBUG_RELAXATION))
     9         kx     this->relaxation_debug_check_->check_output_data_for_reset_values(
     9         kx 	this->section_list_, this->special_output_list_,
     9         kx 	this->relax_output_list_);
     9         kx 
     9         kx   // Also enable recording of output section data from scripts.
     9         kx   this->record_output_section_data_from_script_ = true;
     9         kx }
     9         kx 
     9         kx // If the user set the address of the text segment, that may not be
     9         kx // compatible with putting the segment headers and file headers into
     9         kx // that segment.  For isolate_execinstr() targets, it's the rodata
     9         kx // segment rather than text where we might put the headers.
     9         kx static inline bool
     9         kx load_seg_unusable_for_headers(const Target* target)
     9         kx {
     9         kx   const General_options& options = parameters->options();
     9         kx   if (target->isolate_execinstr())
     9         kx     return (options.user_set_Trodata_segment()
     9         kx 	    && options.Trodata_segment() % target->abi_pagesize() != 0);
     9         kx   else
     9         kx     return (options.user_set_Ttext()
     9         kx 	    && options.Ttext() % target->abi_pagesize() != 0);
     9         kx }
     9         kx 
     9         kx // Relaxation loop body:  If target has no relaxation, this runs only once
     9         kx // Otherwise, the target relaxation hook is called at the end of
     9         kx // each iteration.  If the hook returns true, it means re-layout of
     9         kx // section is required.
     9         kx //
     9         kx // The number of segments created by a linking script without a PHDRS
     9         kx // clause may be affected by section sizes and alignments.  There is
     9         kx // a remote chance that relaxation causes different number of PT_LOAD
     9         kx // segments are created and sections are attached to different segments.
     9         kx // Therefore, we always throw away all segments created during section
     9         kx // layout.  In order to be able to restart the section layout, we keep
     9         kx // a copy of the segment list right before the relaxation loop and use
     9         kx // that to restore the segments.
     9         kx //
     9         kx // PASS is the current relaxation pass number.
     9         kx // SYMTAB is a symbol table.
     9         kx // PLOAD_SEG is the address of a pointer for the load segment.
     9         kx // PHDR_SEG is a pointer to the PHDR segment.
     9         kx // SEGMENT_HEADERS points to the output segment header.
     9         kx // FILE_HEADER points to the output file header.
     9         kx // PSHNDX is the address to store the output section index.
     9         kx 
     9         kx off_t inline
     9         kx Layout::relaxation_loop_body(
     9         kx     int pass,
     9         kx     Target* target,
     9         kx     Symbol_table* symtab,
     9         kx     Output_segment** pload_seg,
     9         kx     Output_segment* phdr_seg,
     9         kx     Output_segment_headers* segment_headers,
     9         kx     Output_file_header* file_header,
     9         kx     unsigned int* pshndx)
     9         kx {
     9         kx   // If this is not the first iteration, we need to clean up after
     9         kx   // relaxation so that we can lay out the sections again.
     9         kx   if (pass != 0)
     9         kx     this->clean_up_after_relaxation();
     9         kx 
     9         kx   // If there is a SECTIONS clause, put all the input sections into
     9         kx   // the required order.
     9         kx   Output_segment* load_seg;
     9         kx   if (this->script_options_->saw_sections_clause())
     9         kx     load_seg = this->set_section_addresses_from_script(symtab);
     9         kx   else if (parameters->options().relocatable())
     9         kx     load_seg = NULL;
     9         kx   else
     9         kx     load_seg = this->find_first_load_seg(target);
     9         kx 
     9         kx   if (parameters->options().oformat_enum()
     9         kx       != General_options::OBJECT_FORMAT_ELF)
     9         kx     load_seg = NULL;
     9         kx 
     9         kx   if (load_seg_unusable_for_headers(target))
     9         kx     {
     9         kx       load_seg = NULL;
     9         kx       phdr_seg = NULL;
     9         kx     }
     9         kx 
     9         kx   gold_assert(phdr_seg == NULL
     9         kx 	      || load_seg != NULL
     9         kx 	      || this->script_options_->saw_sections_clause());
     9         kx 
     9         kx   // If the address of the load segment we found has been set by
     9         kx   // --section-start rather than by a script, then adjust the VMA and
     9         kx   // LMA downward if possible to include the file and section headers.
     9         kx   uint64_t header_gap = 0;
     9         kx   if (load_seg != NULL
     9         kx       && load_seg->are_addresses_set()
     9         kx       && !this->script_options_->saw_sections_clause()
     9         kx       && !parameters->options().relocatable())
     9         kx     {
     9         kx       file_header->finalize_data_size();
     9         kx       segment_headers->finalize_data_size();
     9         kx       size_t sizeof_headers = (file_header->data_size()
     9         kx 			       + segment_headers->data_size());
     9         kx       const uint64_t abi_pagesize = target->abi_pagesize();
     9         kx       uint64_t hdr_paddr = load_seg->paddr() - sizeof_headers;
     9         kx       hdr_paddr &= ~(abi_pagesize - 1);
     9         kx       uint64_t subtract = load_seg->paddr() - hdr_paddr;
     9         kx       if (load_seg->paddr() < subtract || load_seg->vaddr() < subtract)
     9         kx 	load_seg = NULL;
     9         kx       else
     9         kx 	{
     9         kx 	  load_seg->set_addresses(load_seg->vaddr() - subtract,
     9         kx 				  load_seg->paddr() - subtract);
     9         kx 	  header_gap = subtract - sizeof_headers;
     9         kx 	}
     9         kx     }
     9         kx 
     9         kx   // Lay out the segment headers.
     9         kx   if (!parameters->options().relocatable())
     9         kx     {
     9         kx       gold_assert(segment_headers != NULL);
     9         kx       if (header_gap != 0 && load_seg != NULL)
     9         kx 	{
     9         kx 	  Output_data_zero_fill* z = new Output_data_zero_fill(header_gap, 1);
     9         kx 	  load_seg->add_initial_output_data(z);
     9         kx 	}
     9         kx       if (load_seg != NULL)
     9         kx 	load_seg->add_initial_output_data(segment_headers);
     9         kx       if (phdr_seg != NULL)
     9         kx 	phdr_seg->add_initial_output_data(segment_headers);
     9         kx     }
     9         kx 
     9         kx   // Lay out the file header.
     9         kx   if (load_seg != NULL)
     9         kx     load_seg->add_initial_output_data(file_header);
     9         kx 
     9         kx   if (this->script_options_->saw_phdrs_clause()
     9         kx       && !parameters->options().relocatable())
     9         kx     {
     9         kx       // Support use of FILEHDRS and PHDRS attachments in a PHDRS
     9         kx       // clause in a linker script.
     9         kx       Script_sections* ss = this->script_options_->script_sections();
     9         kx       ss->put_headers_in_phdrs(file_header, segment_headers);
     9         kx     }
     9         kx 
     9         kx   // We set the output section indexes in set_segment_offsets and
     9         kx   // set_section_indexes.
     9         kx   *pshndx = 1;
     9         kx 
     9         kx   // Set the file offsets of all the segments, and all the sections
     9         kx   // they contain.
     9         kx   off_t off;
     9         kx   if (!parameters->options().relocatable())
     9         kx     off = this->set_segment_offsets(target, load_seg, pshndx);
     9         kx   else
     9         kx     off = this->set_relocatable_section_offsets(file_header, pshndx);
     9         kx 
     9         kx    // Verify that the dummy relaxation does not change anything.
     9         kx   if (is_debugging_enabled(DEBUG_RELAXATION))
     9         kx     {
     9         kx       if (pass == 0)
     9         kx 	this->relaxation_debug_check_->read_sections(this->section_list_);
     9         kx       else
     9         kx 	this->relaxation_debug_check_->verify_sections(this->section_list_);
     9         kx     }
     9         kx 
     9         kx   *pload_seg = load_seg;
     9         kx   return off;
     9         kx }
     9         kx 
     9         kx // Search the list of patterns and find the position of the given section
     9         kx // name in the output section.  If the section name matches a glob
     9         kx // pattern and a non-glob name, then the non-glob position takes
     9         kx // precedence.  Return 0 if no match is found.
     9         kx 
     9         kx unsigned int
     9         kx Layout::find_section_order_index(const std::string& section_name)
     9         kx {
     9         kx   Unordered_map<std::string, unsigned int>::iterator map_it;
     9         kx   map_it = this->input_section_position_.find(section_name);
     9         kx   if (map_it != this->input_section_position_.end())
     9         kx     return map_it->second;
     9         kx 
     9         kx   // Absolute match failed.  Linear search the glob patterns.
     9         kx   std::vector<std::string>::iterator it;
     9         kx   for (it = this->input_section_glob_.begin();
     9         kx        it != this->input_section_glob_.end();
     9         kx        ++it)
     9         kx     {
     9         kx        if (fnmatch((*it).c_str(), section_name.c_str(), FNM_NOESCAPE) == 0)
     9         kx 	 {
     9         kx 	   map_it = this->input_section_position_.find(*it);
     9         kx 	   gold_assert(map_it != this->input_section_position_.end());
     9         kx 	   return map_it->second;
     9         kx 	 }
     9         kx     }
     9         kx   return 0;
     9         kx }
     9         kx 
     9         kx // Read the sequence of input sections from the file specified with
     9         kx // option --section-ordering-file.
     9         kx 
     9         kx void
     9         kx Layout::read_layout_from_file()
     9         kx {
     9         kx   const char* filename = parameters->options().section_ordering_file();
     9         kx   std::ifstream in;
     9         kx   std::string line;
     9         kx 
     9         kx   in.open(filename);
     9         kx   if (!in)
     9         kx     gold_fatal(_("unable to open --section-ordering-file file %s: %s"),
     9         kx 	       filename, strerror(errno));
     9         kx 
     9         kx   File_read::record_file_read(filename);
     9         kx 
     9         kx   std::getline(in, line);   // this chops off the trailing \n, if any
     9         kx   unsigned int position = 1;
     9         kx   this->set_section_ordering_specified();
     9         kx 
     9         kx   while (in)
     9         kx     {
     9         kx       if (!line.empty() && line[line.length() - 1] == '\r')   // Windows
     9         kx 	line.resize(line.length() - 1);
     9         kx       // Ignore comments, beginning with '#'
     9         kx       if (line[0] == '#')
     9         kx 	{
     9         kx 	  std::getline(in, line);
     9         kx 	  continue;
     9         kx 	}
     9         kx       this->input_section_position_[line] = position;
     9         kx       // Store all glob patterns in a vector.
     9         kx       if (is_wildcard_string(line.c_str()))
     9         kx 	this->input_section_glob_.push_back(line);
     9         kx       position++;
     9         kx       std::getline(in, line);
     9         kx     }
     9         kx }
     9         kx 
     9         kx // Finalize the layout.  When this is called, we have created all the
     9         kx // output sections and all the output segments which are based on
     9         kx // input sections.  We have several things to do, and we have to do
     9         kx // them in the right order, so that we get the right results correctly
     9         kx // and efficiently.
     9         kx 
     9         kx // 1) Finalize the list of output segments and create the segment
     9         kx // table header.
     9         kx 
     9         kx // 2) Finalize the dynamic symbol table and associated sections.
     9         kx 
     9         kx // 3) Determine the final file offset of all the output segments.
     9         kx 
     9         kx // 4) Determine the final file offset of all the SHF_ALLOC output
     9         kx // sections.
     9         kx 
     9         kx // 5) Create the symbol table sections and the section name table
     9         kx // section.
     9         kx 
     9         kx // 6) Finalize the symbol table: set symbol values to their final
     9         kx // value and make a final determination of which symbols are going
     9         kx // into the output symbol table.
     9         kx 
     9         kx // 7) Create the section table header.
     9         kx 
     9         kx // 8) Determine the final file offset of all the output sections which
     9         kx // are not SHF_ALLOC, including the section table header.
     9         kx 
     9         kx // 9) Finalize the ELF file header.
     9         kx 
     9         kx // This function returns the size of the output file.
     9         kx 
     9         kx off_t
     9         kx Layout::finalize(const Input_objects* input_objects, Symbol_table* symtab,
     9         kx 		 Target* target, const Task* task)
     9         kx {
     9         kx   unsigned int local_dynamic_count = 0;
     9         kx   unsigned int forced_local_dynamic_count = 0;
     9         kx 
     9         kx   target->finalize_sections(this, input_objects, symtab);
     9         kx 
     9         kx   this->count_local_symbols(task, input_objects);
     9         kx 
     9         kx   this->link_stabs_sections();
     9         kx 
     9         kx   Output_segment* phdr_seg = NULL;
     9         kx   if (!parameters->options().relocatable() && !parameters->doing_static_link())
     9         kx     {
     9         kx       // There was a dynamic object in the link.  We need to create
     9         kx       // some information for the dynamic linker.
     9         kx 
     9         kx       // Create the PT_PHDR segment which will hold the program
     9         kx       // headers.
     9         kx       if (!this->script_options_->saw_phdrs_clause())
     9         kx 	phdr_seg = this->make_output_segment(elfcpp::PT_PHDR, elfcpp::PF_R);
     9         kx 
     9         kx       // Create the dynamic symbol table, including the hash table.
     9         kx       Output_section* dynstr;
     9         kx       std::vector<Symbol*> dynamic_symbols;
     9         kx       Versions versions(*this->script_options()->version_script_info(),
     9         kx 			&this->dynpool_);
     9         kx       this->create_dynamic_symtab(input_objects, symtab, &dynstr,
     9         kx 				  &local_dynamic_count,
     9         kx 				  &forced_local_dynamic_count,
     9         kx 				  &dynamic_symbols,
     9         kx 				  &versions);
     9         kx 
     9         kx       // Create the .interp section to hold the name of the
     9         kx       // interpreter, and put it in a PT_INTERP segment.  Don't do it
     9         kx       // if we saw a .interp section in an input file.
     9         kx       if ((!parameters->options().shared()
     9         kx 	   || parameters->options().dynamic_linker() != NULL)
     9         kx 	  && this->interp_segment_ == NULL)
     9         kx 	this->create_interp(target);
     9         kx 
     9         kx       // Finish the .dynamic section to hold the dynamic data, and put
     9         kx       // it in a PT_DYNAMIC segment.
     9         kx       this->finish_dynamic_section(input_objects, symtab);
     9         kx 
     9         kx       // We should have added everything we need to the dynamic string
     9         kx       // table.
     9         kx       this->dynpool_.set_string_offsets();
     9         kx 
     9         kx       // Create the version sections.  We can't do this until the
     9         kx       // dynamic string table is complete.
     9         kx       this->create_version_sections(&versions, symtab,
     9         kx 				    (local_dynamic_count
     9         kx 				     + forced_local_dynamic_count),
     9         kx 				    dynamic_symbols, dynstr);
     9         kx 
     9         kx       // Set the size of the _DYNAMIC symbol.  We can't do this until
     9         kx       // after we call create_version_sections.
     9         kx       this->set_dynamic_symbol_size(symtab);
     9         kx     }
     9         kx 
     9         kx   // Create segment headers.
     9         kx   Output_segment_headers* segment_headers =
     9         kx     (parameters->options().relocatable()
     9         kx      ? NULL
     9         kx      : new Output_segment_headers(this->segment_list_));
     9         kx 
     9         kx   // Lay out the file header.
     9         kx   Output_file_header* file_header = new Output_file_header(target, symtab,
     9         kx 							   segment_headers);
     9         kx 
     9         kx   this->special_output_list_.push_back(file_header);
     9         kx   if (segment_headers != NULL)
     9         kx     this->special_output_list_.push_back(segment_headers);
     9         kx 
     9         kx   // Find approriate places for orphan output sections if we are using
     9         kx   // a linker script.
     9         kx   if (this->script_options_->saw_sections_clause())
     9         kx     this->place_orphan_sections_in_script();
     9         kx 
     9         kx   Output_segment* load_seg;
     9         kx   off_t off;
     9         kx   unsigned int shndx;
     9         kx   int pass = 0;
     9         kx 
     9         kx   // Take a snapshot of the section layout as needed.
     9         kx   if (target->may_relax())
     9         kx     this->prepare_for_relaxation();
     9         kx 
     9         kx   // Run the relaxation loop to lay out sections.
     9         kx   do
     9         kx     {
     9         kx       off = this->relaxation_loop_body(pass, target, symtab, &load_seg,
     9         kx 				       phdr_seg, segment_headers, file_header,
     9         kx 				       &shndx);
     9         kx       pass++;
     9         kx     }
     9         kx   while (target->may_relax()
     9         kx 	 && target->relax(pass, input_objects, symtab, this, task));
     9         kx 
     9         kx   // If there is a load segment that contains the file and program headers,
     9         kx   // provide a symbol __ehdr_start pointing there.
     9         kx   // A program can use this to examine itself robustly.
     9         kx   Symbol *ehdr_start = symtab->lookup("__ehdr_start");
     9         kx   if (ehdr_start != NULL && ehdr_start->is_predefined())
     9         kx     {
     9         kx       if (load_seg != NULL)
     9         kx 	ehdr_start->set_output_segment(load_seg, Symbol::SEGMENT_START);
     9         kx       else
     9         kx 	ehdr_start->set_undefined();
     9         kx     }
     9         kx 
     9         kx   // Set the file offsets of all the non-data sections we've seen so
     9         kx   // far which don't have to wait for the input sections.  We need
     9         kx   // this in order to finalize local symbols in non-allocated
     9         kx   // sections.
     9         kx   off = this->set_section_offsets(off, BEFORE_INPUT_SECTIONS_PASS);
     9         kx 
     9         kx   // Set the section indexes of all unallocated sections seen so far,
     9         kx   // in case any of them are somehow referenced by a symbol.
     9         kx   shndx = this->set_section_indexes(shndx);
     9         kx 
     9         kx   // Create the symbol table sections.
     9         kx   this->create_symtab_sections(input_objects, symtab, shndx, &off,
     9         kx 			       local_dynamic_count);
     9         kx   if (!parameters->doing_static_link())
     9         kx     this->assign_local_dynsym_offsets(input_objects);
     9         kx 
     9         kx   // Process any symbol assignments from a linker script.  This must
     9         kx   // be called after the symbol table has been finalized.
     9         kx   this->script_options_->finalize_symbols(symtab, this);
     9         kx 
     9         kx   // Create the incremental inputs sections.
     9         kx   if (this->incremental_inputs_)
     9         kx     {
     9         kx       this->incremental_inputs_->finalize();
     9         kx       this->create_incremental_info_sections(symtab);
     9         kx     }
     9         kx 
     9         kx   // Create the .shstrtab section.
     9         kx   Output_section* shstrtab_section = this->create_shstrtab();
     9         kx 
     9         kx   // Set the file offsets of the rest of the non-data sections which
     9         kx   // don't have to wait for the input sections.
     9         kx   off = this->set_section_offsets(off, BEFORE_INPUT_SECTIONS_PASS);
     9         kx 
     9         kx   // Now that all sections have been created, set the section indexes
     9         kx   // for any sections which haven't been done yet.
     9         kx   shndx = this->set_section_indexes(shndx);
     9         kx 
     9         kx   // Create the section table header.
     9         kx   this->create_shdrs(shstrtab_section, &off);
     9         kx 
     9         kx   // If there are no sections which require postprocessing, we can
     9         kx   // handle the section names now, and avoid a resize later.
     9         kx   if (!this->any_postprocessing_sections_)
     9         kx     {
     9         kx       off = this->set_section_offsets(off,
     9         kx 				      POSTPROCESSING_SECTIONS_PASS);
     9         kx       off =
     9         kx 	  this->set_section_offsets(off,
     9         kx 				    STRTAB_AFTER_POSTPROCESSING_SECTIONS_PASS);
     9         kx     }
     9         kx 
     9         kx   file_header->set_section_info(this->section_headers_, shstrtab_section);
     9         kx 
     9         kx   // Now we know exactly where everything goes in the output file
     9         kx   // (except for non-allocated sections which require postprocessing).
     9         kx   Output_data::layout_complete();
     9         kx 
     9         kx   this->output_file_size_ = off;
     9         kx 
     9         kx   return off;
     9         kx }
     9         kx 
     9         kx // Create a note header following the format defined in the ELF ABI.
     9         kx // NAME is the name, NOTE_TYPE is the type, SECTION_NAME is the name
     9         kx // of the section to create, DESCSZ is the size of the descriptor.
     9         kx // ALLOCATE is true if the section should be allocated in memory.
     9         kx // This returns the new note section.  It sets *TRAILING_PADDING to
     9         kx // the number of trailing zero bytes required.
     9         kx 
     9         kx Output_section*
     9         kx Layout::create_note(const char* name, int note_type,
     9         kx 		    const char* section_name, size_t descsz,
     9         kx 		    bool allocate, size_t* trailing_padding)
     9         kx {
     9         kx   // Authorities all agree that the values in a .note field should
     9         kx   // be aligned on 4-byte boundaries for 32-bit binaries.  However,
     9         kx   // they differ on what the alignment is for 64-bit binaries.
     9         kx   // The GABI says unambiguously they take 8-byte alignment:
     9         kx   //    http://sco.com/developers/gabi/latest/ch5.pheader.html#note_section
     9         kx   // Other documentation says alignment should always be 4 bytes:
     9         kx   //    http://www.netbsd.org/docs/kernel/elf-notes.html#note-format
     9         kx   // GNU ld and GNU readelf both support the latter (at least as of
     9         kx   // version 2.16.91), and glibc always generates the latter for
     9         kx   // .note.ABI-tag (as of version 1.6), so that's the one we go with
     9         kx   // here.
     9         kx #ifdef GABI_FORMAT_FOR_DOTNOTE_SECTION   // This is not defined by default.
     9         kx   const int size = parameters->target().get_size();
     9         kx #else
     9         kx   const int size = 32;
     9         kx #endif
     9         kx   // The NT_GNU_PROPERTY_TYPE_0 note is aligned to the pointer size.
     9         kx   const int addralign = ((note_type == elfcpp::NT_GNU_PROPERTY_TYPE_0
     9         kx 			 ? parameters->target().get_size()
     9         kx 			 : size) / 8);
     9         kx 
     9         kx   // The contents of the .note section.
     9         kx   size_t namesz = strlen(name) + 1;
     9         kx   size_t aligned_namesz = align_address(namesz, size / 8);
     9         kx   size_t aligned_descsz = align_address(descsz, size / 8);
     9         kx 
     9         kx   size_t notehdrsz = 3 * (size / 8) + aligned_namesz;
     9         kx 
     9         kx   unsigned char* buffer = new unsigned char[notehdrsz];
     9         kx   memset(buffer, 0, notehdrsz);
     9         kx 
     9         kx   bool is_big_endian = parameters->target().is_big_endian();
     9         kx 
     9         kx   if (size == 32)
     9         kx     {
     9         kx       if (!is_big_endian)
     9         kx 	{
     9         kx 	  elfcpp::Swap<32, false>::writeval(buffer, namesz);
     9         kx 	  elfcpp::Swap<32, false>::writeval(buffer + 4, descsz);
     9         kx 	  elfcpp::Swap<32, false>::writeval(buffer + 8, note_type);
     9         kx 	}
     9         kx       else
     9         kx 	{
     9         kx 	  elfcpp::Swap<32, true>::writeval(buffer, namesz);
     9         kx 	  elfcpp::Swap<32, true>::writeval(buffer + 4, descsz);
     9         kx 	  elfcpp::Swap<32, true>::writeval(buffer + 8, note_type);
     9         kx 	}
     9         kx     }
     9         kx   else if (size == 64)
     9         kx     {
     9         kx       if (!is_big_endian)
     9         kx 	{
     9         kx 	  elfcpp::Swap<64, false>::writeval(buffer, namesz);
     9         kx 	  elfcpp::Swap<64, false>::writeval(buffer + 8, descsz);
     9         kx 	  elfcpp::Swap<64, false>::writeval(buffer + 16, note_type);
     9         kx 	}
     9         kx       else
     9         kx 	{
     9         kx 	  elfcpp::Swap<64, true>::writeval(buffer, namesz);
     9         kx 	  elfcpp::Swap<64, true>::writeval(buffer + 8, descsz);
     9         kx 	  elfcpp::Swap<64, true>::writeval(buffer + 16, note_type);
     9         kx 	}
     9         kx     }
     9         kx   else
     9         kx     gold_unreachable();
     9         kx 
     9         kx   memcpy(buffer + 3 * (size / 8), name, namesz);
     9         kx 
     9         kx   elfcpp::Elf_Xword flags = 0;
     9         kx   Output_section_order order = ORDER_INVALID;
     9         kx   if (allocate)
     9         kx     {
     9         kx       flags = elfcpp::SHF_ALLOC;
     9         kx       order = (note_type == elfcpp::NT_GNU_PROPERTY_TYPE_0
     9         kx 	       ?  ORDER_PROPERTY_NOTE : ORDER_RO_NOTE);
     9         kx     }
     9         kx   Output_section* os = this->choose_output_section(NULL, section_name,
     9         kx 						   elfcpp::SHT_NOTE,
     9         kx 						   flags, false, order, false,
     9         kx 						   false, true);
     9         kx   if (os == NULL)
     9         kx     return NULL;
     9         kx 
     9         kx   Output_section_data* posd = new Output_data_const_buffer(buffer, notehdrsz,
     9         kx 							   addralign,
     9         kx 							   "** note header");
     9         kx   os->add_output_section_data(posd);
     9         kx 
     9         kx   *trailing_padding = aligned_descsz - descsz;
     9         kx 
     9         kx   return os;
     9         kx }
     9         kx 
     9         kx // Create a .note.gnu.property section to record program properties
     9         kx // accumulated from the input files.
     9         kx 
     9         kx void
     9         kx Layout::create_gnu_properties_note()
     9         kx {
     9         kx   parameters->target().finalize_gnu_properties(this);
     9         kx 
     9         kx   if (this->gnu_properties_.empty())
     9         kx     return;
     9         kx 
     9         kx   const unsigned int size = parameters->target().get_size();
     9         kx   const bool is_big_endian = parameters->target().is_big_endian();
     9         kx 
     9         kx   // Compute the total size of the properties array.
     9         kx   size_t descsz = 0;
     9         kx   for (Gnu_properties::const_iterator prop = this->gnu_properties_.begin();
     9         kx        prop != this->gnu_properties_.end();
     9         kx        ++prop)
     9         kx     {
     9         kx       descsz = align_address(descsz + 8 + prop->second.pr_datasz, size / 8);
     9         kx     }
     9         kx 
     9         kx   // Create the note section.
     9         kx   size_t trailing_padding;
     9         kx   Output_section* os = this->create_note("GNU", elfcpp::NT_GNU_PROPERTY_TYPE_0,
     9         kx 					 ".note.gnu.property", descsz,
     9         kx 					 true, &trailing_padding);
     9         kx   if (os == NULL)
     9         kx     return;
     9         kx   gold_assert(trailing_padding == 0);
     9         kx 
     9         kx   // Allocate and fill the properties array.
     9         kx   unsigned char* desc = new unsigned char[descsz];
     9         kx   unsigned char* p = desc;
     9         kx   for (Gnu_properties::const_iterator prop = this->gnu_properties_.begin();
     9         kx        prop != this->gnu_properties_.end();
     9         kx        ++prop)
     9         kx     {
     9         kx       size_t datasz = prop->second.pr_datasz;
     9         kx       size_t aligned_datasz = align_address(prop->second.pr_datasz, size / 8);
     9         kx       write_sized_value(prop->first, 4, p, is_big_endian);
     9         kx       write_sized_value(datasz, 4, p + 4, is_big_endian);
     9         kx       memcpy(p + 8, prop->second.pr_data, datasz);
     9         kx       if (aligned_datasz > datasz)
     9         kx 	memset(p + 8 + datasz, 0, aligned_datasz - datasz);
     9         kx       p += 8 + aligned_datasz;
     9         kx     }
     9         kx   Output_section_data* posd = new Output_data_const(desc, descsz, 4);
     9         kx   os->add_output_section_data(posd);
     9         kx }
     9         kx 
     9         kx // For an executable or shared library, create a note to record the
     9         kx // version of gold used to create the binary.
     9         kx 
     9         kx void
     9         kx Layout::create_gold_note()
     9         kx {
     9         kx   if (parameters->options().relocatable()
     9         kx       || parameters->incremental_update())
     9         kx     return;
     9         kx 
     9         kx   std::string desc = std::string("gold ") + gold::get_version_string();
     9         kx 
     9         kx   size_t trailing_padding;
     9         kx   Output_section* os = this->create_note("GNU", elfcpp::NT_GNU_GOLD_VERSION,
     9         kx 					 ".note.gnu.gold-version", desc.size(),
     9         kx 					 false, &trailing_padding);
     9         kx   if (os == NULL)
     9         kx     return;
     9         kx 
     9         kx   Output_section_data* posd = new Output_data_const(desc, 4);
     9         kx   os->add_output_section_data(posd);
     9         kx 
     9         kx   if (trailing_padding > 0)
     9         kx     {
     9         kx       posd = new Output_data_zero_fill(trailing_padding, 0);
     9         kx       os->add_output_section_data(posd);
     9         kx     }
     9         kx }
     9         kx 
     9         kx // Record whether the stack should be executable.  This can be set
     9         kx // from the command line using the -z execstack or -z noexecstack
     9         kx // options.  Otherwise, if any input file has a .note.GNU-stack
     9         kx // section with the SHF_EXECINSTR flag set, the stack should be
     9         kx // executable.  Otherwise, if at least one input file a
     9         kx // .note.GNU-stack section, and some input file has no .note.GNU-stack
     9         kx // section, we use the target default for whether the stack should be
     9         kx // executable.  If -z stack-size was used to set a p_memsz value for
     9         kx // PT_GNU_STACK, we generate the segment regardless.  Otherwise, we
     9         kx // don't generate a stack note.  When generating a object file, we
     9         kx // create a .note.GNU-stack section with the appropriate marking.
     9         kx // When generating an executable or shared library, we create a
     9         kx // PT_GNU_STACK segment.
     9         kx 
     9         kx void
     9         kx Layout::create_stack_segment()
     9         kx {
     9         kx   bool is_stack_executable;
     9         kx   if (parameters->options().is_execstack_set())
     9         kx     {
     9         kx       is_stack_executable = parameters->options().is_stack_executable();
     9         kx       if (!is_stack_executable
     9         kx 	  && this->input_requires_executable_stack_
     9         kx 	  && parameters->options().warn_execstack())
     9         kx 	gold_warning(_("one or more inputs require executable stack, "
     9         kx 		       "but -z noexecstack was given"));
     9         kx     }
     9         kx   else if (!this->input_with_gnu_stack_note_
     9         kx 	   && (!parameters->options().user_set_stack_size()
     9         kx 	       || parameters->options().relocatable()))
     9         kx     return;
     9         kx   else
     9         kx     {
     9         kx       if (this->input_requires_executable_stack_)
     9         kx 	is_stack_executable = true;
     9         kx       else if (this->input_without_gnu_stack_note_)
     9         kx 	is_stack_executable =
     9         kx 	  parameters->target().is_default_stack_executable();
     9         kx       else
     9         kx 	is_stack_executable = false;
     9         kx     }
     9         kx 
     9         kx   if (parameters->options().relocatable())
     9         kx     {
     9         kx       const char* name = this->namepool_.add(".note.GNU-stack", false, NULL);
     9         kx       elfcpp::Elf_Xword flags = 0;
     9         kx       if (is_stack_executable)
     9         kx 	flags |= elfcpp::SHF_EXECINSTR;
     9         kx       this->make_output_section(name, elfcpp::SHT_PROGBITS, flags,
     9         kx 				ORDER_INVALID, false);
     9         kx     }
     9         kx   else
     9         kx     {
     9         kx       if (this->script_options_->saw_phdrs_clause())
     9         kx 	return;
     9         kx       int flags = elfcpp::PF_R | elfcpp::PF_W;
     9         kx       if (is_stack_executable)
     9         kx 	flags |= elfcpp::PF_X;
     9         kx       Output_segment* seg =
     9         kx 	this->make_output_segment(elfcpp::PT_GNU_STACK, flags);
     9         kx       seg->set_size(parameters->options().stack_size());
     9         kx       // BFD lets targets override this default alignment, but the only
     9         kx       // targets that do so are ones that Gold does not support so far.
     9         kx       seg->set_minimum_p_align(16);
     9         kx     }
     9         kx }
     9         kx 
     9         kx // If --build-id was used, set up the build ID note.
     9         kx 
     9         kx void
     9         kx Layout::create_build_id()
     9         kx {
     9         kx   if (!parameters->options().user_set_build_id())
     9         kx     return;
     9         kx 
     9         kx   const char* style = parameters->options().build_id();
     9         kx   if (strcmp(style, "none") == 0)
     9         kx     return;
     9         kx 
     9         kx   // Set DESCSZ to the size of the note descriptor.  When possible,
     9         kx   // set DESC to the note descriptor contents.
     9         kx   size_t descsz;
     9         kx   std::string desc;
     9         kx   if (strcmp(style, "md5") == 0)
     9         kx     descsz = 128 / 8;
     9         kx   else if ((strcmp(style, "sha1") == 0) || (strcmp(style, "tree") == 0))
     9         kx     descsz = 160 / 8;
     9         kx   else if (strcmp(style, "uuid") == 0)
     9         kx     {
     9         kx #ifndef __MINGW32__
     9         kx       const size_t uuidsz = 128 / 8;
     9         kx 
     9         kx       char buffer[uuidsz];
     9         kx       memset(buffer, 0, uuidsz);
     9         kx 
     9         kx       int descriptor = open_descriptor(-1, "/dev/urandom", O_RDONLY);
     9         kx       if (descriptor < 0)
     9         kx 	gold_error(_("--build-id=uuid failed: could not open /dev/urandom: %s"),
     9         kx 		   strerror(errno));
     9         kx       else
     9         kx 	{
     9         kx 	  ssize_t got = ::read(descriptor, buffer, uuidsz);
     9         kx 	  release_descriptor(descriptor, true);
     9         kx 	  if (got < 0)
     9         kx 	    gold_error(_("/dev/urandom: read failed: %s"), strerror(errno));
     9         kx 	  else if (static_cast<size_t>(got) != uuidsz)
     9         kx 	    gold_error(_("/dev/urandom: expected %zu bytes, got %zd bytes"),
     9         kx 		       uuidsz, got);
     9         kx 	}
     9         kx 
     9         kx       desc.assign(buffer, uuidsz);
     9         kx       descsz = uuidsz;
     9         kx #else // __MINGW32__
     9         kx       UUID uuid;
     9         kx       typedef RPC_STATUS (RPC_ENTRY *UuidCreateFn)(UUID *Uuid);
     9         kx 
     9         kx       HMODULE rpc_library = LoadLibrary("rpcrt4.dll");
     9         kx       if (!rpc_library)
     9         kx 	gold_error(_("--build-id=uuid failed: could not load rpcrt4.dll"));
     9         kx       else
     9         kx 	{
     9         kx 	  UuidCreateFn uuid_create = reinterpret_cast<UuidCreateFn>(
     9         kx 	      GetProcAddress(rpc_library, "UuidCreate"));
     9         kx 	  if (!uuid_create)
     9         kx 	    gold_error(_("--build-id=uuid failed: could not find UuidCreate"));
     9         kx 	  else if (uuid_create(&uuid) != RPC_S_OK)
     9         kx 	    gold_error(_("__build_id=uuid failed: call UuidCreate() failed"));
     9         kx 	  FreeLibrary(rpc_library);
     9         kx 	}
     9         kx       desc.assign(reinterpret_cast<const char *>(&uuid), sizeof(UUID));
     9         kx       descsz = sizeof(UUID);
     9         kx #endif // __MINGW32__
     9         kx     }
     9         kx   else if (strncmp(style, "0x", 2) == 0)
     9         kx     {
     9         kx       hex_init();
     9         kx       const char* p = style + 2;
     9         kx       while (*p != '\0')
     9         kx 	{
     9         kx 	  if (hex_p(p[0]) && hex_p(p[1]))
     9         kx 	    {
     9         kx 	      char c = (hex_value(p[0]) << 4) | hex_value(p[1]);
     9         kx 	      desc += c;
     9         kx 	      p += 2;
     9         kx 	    }
     9         kx 	  else if (*p == '-' || *p == ':')
     9         kx 	    ++p;
     9         kx 	  else
     9         kx 	    gold_fatal(_("--build-id argument '%s' not a valid hex number"),
     9         kx 		       style);
     9         kx 	}
     9         kx       descsz = desc.size();
     9         kx     }
     9         kx   else
     9         kx     gold_fatal(_("unrecognized --build-id argument '%s'"), style);
     9         kx 
     9         kx   // Create the note.
     9         kx   size_t trailing_padding;
     9         kx   Output_section* os = this->create_note("GNU", elfcpp::NT_GNU_BUILD_ID,
     9         kx 					 ".note.gnu.build-id", descsz, true,
     9         kx 					 &trailing_padding);
     9         kx   if (os == NULL)
     9         kx     return;
     9         kx 
     9         kx   if (!desc.empty())
     9         kx     {
     9         kx       // We know the value already, so we fill it in now.
     9         kx       gold_assert(desc.size() == descsz);
     9         kx 
     9         kx       Output_section_data* posd = new Output_data_const(desc, 4);
     9         kx       os->add_output_section_data(posd);
     9         kx 
     9         kx       if (trailing_padding != 0)
     9         kx 	{
     9         kx 	  posd = new Output_data_zero_fill(trailing_padding, 0);
     9         kx 	  os->add_output_section_data(posd);
     9         kx 	}
     9         kx     }
     9         kx   else
     9         kx     {
     9         kx       // We need to compute a checksum after we have completed the
     9         kx       // link.
     9         kx       gold_assert(trailing_padding == 0);
     9         kx       this->build_id_note_ = new Output_data_zero_fill(descsz, 4);
     9         kx       os->add_output_section_data(this->build_id_note_);
     9         kx     }
     9         kx }
     9         kx 
     9         kx // If --package-metadata was used, set up the package metadata note.
     9         kx // https://systemd.io/ELF_PACKAGE_METADATA/
     9         kx 
     9         kx void
     9         kx Layout::create_package_metadata()
     9         kx {
     9         kx   if (!parameters->options().user_set_package_metadata())
     9         kx     return;
     9         kx 
     9         kx   const char* desc = parameters->options().package_metadata();
     9         kx   if (strcmp(desc, "") == 0)
     9         kx     return;
     9         kx 
     9         kx #ifdef HAVE_JANSSON
     9         kx   json_error_t json_error;
     9         kx   json_t *json = json_loads(desc, 0, &json_error);
     9         kx   if (json)
     9         kx     json_decref(json);
     9         kx   else
     9         kx     {
     9         kx       gold_fatal(_("error: --package-metadata=%s does not contain valid "
     9         kx 		   "JSON: %s\n"),
     9         kx 		 desc, json_error.text);
     9         kx     }
     9         kx #endif
     9         kx 
     9         kx   // Create the note.
     9         kx   size_t trailing_padding;
     9         kx   // Ensure the trailing NULL byte is always included, as per specification.
     9         kx   size_t descsz = strlen(desc) + 1;
     9         kx   Output_section* os = this->create_note("FDO", elfcpp::FDO_PACKAGING_METADATA,
     9         kx 					 ".note.package", descsz, true,
     9         kx 					 &trailing_padding);
     9         kx   if (os == NULL)
     9         kx     return;
     9         kx 
     9         kx   Output_section_data* posd = new Output_data_const(desc, descsz, 4);
     9         kx   os->add_output_section_data(posd);
     9         kx 
     9         kx   if (trailing_padding != 0)
     9         kx     {
     9         kx       posd = new Output_data_zero_fill(trailing_padding, 0);
     9         kx       os->add_output_section_data(posd);
     9         kx     }
     9         kx }
     9         kx 
     9         kx // If we have both .stabXX and .stabXXstr sections, then the sh_link
     9         kx // field of the former should point to the latter.  I'm not sure who
     9         kx // started this, but the GNU linker does it, and some tools depend
     9         kx // upon it.
     9         kx 
     9         kx void
     9         kx Layout::link_stabs_sections()
     9         kx {
     9         kx   if (!this->have_stabstr_section_)
     9         kx     return;
     9         kx 
     9         kx   for (Section_list::iterator p = this->section_list_.begin();
     9         kx        p != this->section_list_.end();
     9         kx        ++p)
     9         kx     {
     9         kx       if ((*p)->type() != elfcpp::SHT_STRTAB)
     9         kx 	continue;
     9         kx 
     9         kx       const char* name = (*p)->name();
     9         kx       if (strncmp(name, ".stab", 5) != 0)
     9         kx 	continue;
     9         kx 
     9         kx       size_t len = strlen(name);
     9         kx       if (strcmp(name + len - 3, "str") != 0)
     9         kx 	continue;
     9         kx 
     9         kx       std::string stab_name(name, len - 3);
     9         kx       Output_section* stab_sec;
     9         kx       stab_sec = this->find_output_section(stab_name.c_str());
     9         kx       if (stab_sec != NULL)
     9         kx 	stab_sec->set_link_section(*p);
     9         kx     }
     9         kx }
     9         kx 
     9         kx // Create .gnu_incremental_inputs and related sections needed
     9         kx // for the next run of incremental linking to check what has changed.
     9         kx 
     9         kx void
     9         kx Layout::create_incremental_info_sections(Symbol_table* symtab)
     9         kx {
     9         kx   Incremental_inputs* incr = this->incremental_inputs_;
     9         kx 
     9         kx   gold_assert(incr != NULL);
     9         kx 
     9         kx   // Create the .gnu_incremental_inputs, _symtab, and _relocs input sections.
     9         kx   incr->create_data_sections(symtab);
     9         kx 
     9         kx   // Add the .gnu_incremental_inputs section.
     9         kx   const char* incremental_inputs_name =
     9         kx     this->namepool_.add(".gnu_incremental_inputs", false, NULL);
     9         kx   Output_section* incremental_inputs_os =
     9         kx     this->make_output_section(incremental_inputs_name,
     9         kx 			      elfcpp::SHT_GNU_INCREMENTAL_INPUTS, 0,
     9         kx 			      ORDER_INVALID, false);
     9         kx   incremental_inputs_os->add_output_section_data(incr->inputs_section());
     9         kx 
     9         kx   // Add the .gnu_incremental_symtab section.
     9         kx   const char* incremental_symtab_name =
     9         kx     this->namepool_.add(".gnu_incremental_symtab", false, NULL);
     9         kx   Output_section* incremental_symtab_os =
     9         kx     this->make_output_section(incremental_symtab_name,
     9         kx 			      elfcpp::SHT_GNU_INCREMENTAL_SYMTAB, 0,
     9         kx 			      ORDER_INVALID, false);
     9         kx   incremental_symtab_os->add_output_section_data(incr->symtab_section());
     9         kx   incremental_symtab_os->set_entsize(4);
     9         kx 
     9         kx   // Add the .gnu_incremental_relocs section.
     9         kx   const char* incremental_relocs_name =
     9         kx     this->namepool_.add(".gnu_incremental_relocs", false, NULL);
     9         kx   Output_section* incremental_relocs_os =
     9         kx     this->make_output_section(incremental_relocs_name,
     9         kx 			      elfcpp::SHT_GNU_INCREMENTAL_RELOCS, 0,
     9         kx 			      ORDER_INVALID, false);
     9         kx   incremental_relocs_os->add_output_section_data(incr->relocs_section());
     9         kx   incremental_relocs_os->set_entsize(incr->relocs_entsize());
     9         kx 
     9         kx   // Add the .gnu_incremental_got_plt section.
     9         kx   const char* incremental_got_plt_name =
     9         kx     this->namepool_.add(".gnu_incremental_got_plt", false, NULL);
     9         kx   Output_section* incremental_got_plt_os =
     9         kx     this->make_output_section(incremental_got_plt_name,
     9         kx 			      elfcpp::SHT_GNU_INCREMENTAL_GOT_PLT, 0,
     9         kx 			      ORDER_INVALID, false);
     9         kx   incremental_got_plt_os->add_output_section_data(incr->got_plt_section());
     9         kx 
     9         kx   // Add the .gnu_incremental_strtab section.
     9         kx   const char* incremental_strtab_name =
     9         kx     this->namepool_.add(".gnu_incremental_strtab", false, NULL);
     9         kx   Output_section* incremental_strtab_os = this->make_output_section(incremental_strtab_name,
     9         kx 							elfcpp::SHT_STRTAB, 0,
     9         kx 							ORDER_INVALID, false);
     9         kx   Output_data_strtab* strtab_data =
     9         kx       new Output_data_strtab(incr->get_stringpool());
     9         kx   incremental_strtab_os->add_output_section_data(strtab_data);
     9         kx 
     9         kx   incremental_inputs_os->set_after_input_sections();
     9         kx   incremental_symtab_os->set_after_input_sections();
     9         kx   incremental_relocs_os->set_after_input_sections();
     9         kx   incremental_got_plt_os->set_after_input_sections();
     9         kx 
     9         kx   incremental_inputs_os->set_link_section(incremental_strtab_os);
     9         kx   incremental_symtab_os->set_link_section(incremental_inputs_os);
     9         kx   incremental_relocs_os->set_link_section(incremental_inputs_os);
     9         kx   incremental_got_plt_os->set_link_section(incremental_inputs_os);
     9         kx }
     9         kx 
     9         kx // Return whether SEG1 should be before SEG2 in the output file.  This
     9         kx // is based entirely on the segment type and flags.  When this is
     9         kx // called the segment addresses have normally not yet been set.
     9         kx 
     9         kx bool
     9         kx Layout::segment_precedes(const Output_segment* seg1,
     9         kx 			 const Output_segment* seg2)
     9         kx {
     9         kx   // In order to produce a stable ordering if we're called with the same pointer
     9         kx   // return false.
     9         kx   if (seg1 == seg2)
     9         kx     return false;
     9         kx 
     9         kx   elfcpp::Elf_Word type1 = seg1->type();
     9         kx   elfcpp::Elf_Word type2 = seg2->type();
     9         kx 
     9         kx   // The single PT_PHDR segment is required to precede any loadable
     9         kx   // segment.  We simply make it always first.
     9         kx   if (type1 == elfcpp::PT_PHDR)
     9         kx     {
     9         kx       gold_assert(type2 != elfcpp::PT_PHDR);
     9         kx       return true;
     9         kx     }
     9         kx   if (type2 == elfcpp::PT_PHDR)
     9         kx     return false;
     9         kx 
     9         kx   // The single PT_INTERP segment is required to precede any loadable
     9         kx   // segment.  We simply make it always second.
     9         kx   if (type1 == elfcpp::PT_INTERP)
     9         kx     {
     9         kx       gold_assert(type2 != elfcpp::PT_INTERP);
     9         kx       return true;
     9         kx     }
     9         kx   if (type2 == elfcpp::PT_INTERP)
     9         kx     return false;
     9         kx 
     9         kx   // We then put PT_LOAD segments before any other segments.
     9         kx   if (type1 == elfcpp::PT_LOAD && type2 != elfcpp::PT_LOAD)
     9         kx     return true;
     9         kx   if (type2 == elfcpp::PT_LOAD && type1 != elfcpp::PT_LOAD)
     9         kx     return false;
     9         kx 
     9         kx   // We put the PT_TLS segment last except for the PT_GNU_RELRO
     9         kx   // segment, because that is where the dynamic linker expects to find
     9         kx   // it (this is just for efficiency; other positions would also work
     9         kx   // correctly).
     9         kx   if (type1 == elfcpp::PT_TLS
     9         kx       && type2 != elfcpp::PT_TLS
     9         kx       && type2 != elfcpp::PT_GNU_RELRO)
     9         kx     return false;
     9         kx   if (type2 == elfcpp::PT_TLS
     9         kx       && type1 != elfcpp::PT_TLS
     9         kx       && type1 != elfcpp::PT_GNU_RELRO)
     9         kx     return true;
     9         kx 
     9         kx   // We put the PT_GNU_RELRO segment last, because that is where the
     9         kx   // dynamic linker expects to find it (as with PT_TLS, this is just
     9         kx   // for efficiency).
     9         kx   if (type1 == elfcpp::PT_GNU_RELRO && type2 != elfcpp::PT_GNU_RELRO)
     9         kx     return false;
     9         kx   if (type2 == elfcpp::PT_GNU_RELRO && type1 != elfcpp::PT_GNU_RELRO)
     9         kx     return true;
     9         kx 
     9         kx   const elfcpp::Elf_Word flags1 = seg1->flags();
     9         kx   const elfcpp::Elf_Word flags2 = seg2->flags();
     9         kx 
     9         kx   // The order of non-PT_LOAD segments is unimportant.  We simply sort
     9         kx   // by the numeric segment type and flags values.  There should not
     9         kx   // be more than one segment with the same type and flags, except
     9         kx   // when a linker script specifies such.
     9         kx   if (type1 != elfcpp::PT_LOAD)
     9         kx     {
     9         kx       if (type1 != type2)
     9         kx 	return type1 < type2;
     9         kx       uint64_t align1 = seg1->align();
     9         kx       uint64_t align2 = seg2->align();
     9         kx       // Place segments with larger alignments first.
     9         kx       if (align1 != align2)
     9         kx 	return align1 > align2;
     9         kx       gold_assert(flags1 != flags2
     9         kx 		  || this->script_options_->saw_phdrs_clause());
     9         kx       return flags1 < flags2;
     9         kx     }
     9         kx 
     9         kx   // If the addresses are set already, sort by load address.
     9         kx   if (seg1->are_addresses_set())
     9         kx     {
     9         kx       if (!seg2->are_addresses_set())
     9         kx 	return true;
     9         kx 
     9         kx       unsigned int section_count1 = seg1->output_section_count();
     9         kx       unsigned int section_count2 = seg2->output_section_count();
     9         kx       if (section_count1 == 0 && section_count2 > 0)
     9         kx 	return true;
     9         kx       if (section_count1 > 0 && section_count2 == 0)
     9         kx 	return false;
     9         kx 
     9         kx       uint64_t paddr1 =	(seg1->are_addresses_set()
     9         kx 			 ? seg1->paddr()
     9         kx 			 : seg1->first_section_load_address());
     9         kx       uint64_t paddr2 =	(seg2->are_addresses_set()
     9         kx 			 ? seg2->paddr()
     9         kx 			 : seg2->first_section_load_address());
     9         kx 
     9         kx       if (paddr1 != paddr2)
     9         kx 	return paddr1 < paddr2;
     9         kx     }
     9         kx   else if (seg2->are_addresses_set())
     9         kx     return false;
     9         kx 
     9         kx   // A segment which holds large data comes after a segment which does
     9         kx   // not hold large data.
     9         kx   if (seg1->is_large_data_segment())
     9         kx     {
     9         kx       if (!seg2->is_large_data_segment())
     9         kx 	return false;
     9         kx     }
     9         kx   else if (seg2->is_large_data_segment())
     9         kx     return true;
     9         kx 
     9         kx   // Otherwise, we sort PT_LOAD segments based on the flags.  Readonly
     9         kx   // segments come before writable segments.  Then writable segments
     9         kx   // with data come before writable segments without data.  Then
     9         kx   // executable segments come before non-executable segments.  Then
     9         kx   // the unlikely case of a non-readable segment comes before the
     9         kx   // normal case of a readable segment.  If there are multiple
     9         kx   // segments with the same type and flags, we require that the
     9         kx   // address be set, and we sort by virtual address and then physical
     9         kx   // address.
     9         kx   if ((flags1 & elfcpp::PF_W) != (flags2 & elfcpp::PF_W))
     9         kx     return (flags1 & elfcpp::PF_W) == 0;
     9         kx   if ((flags1 & elfcpp::PF_W) != 0
     9         kx       && seg1->has_any_data_sections() != seg2->has_any_data_sections())
     9         kx     return seg1->has_any_data_sections();
     9         kx   if ((flags1 & elfcpp::PF_X) != (flags2 & elfcpp::PF_X))
     9         kx     return (flags1 & elfcpp::PF_X) != 0;
     9         kx   if ((flags1 & elfcpp::PF_R) != (flags2 & elfcpp::PF_R))
     9         kx     return (flags1 & elfcpp::PF_R) == 0;
     9         kx 
     9         kx   // We shouldn't get here--we shouldn't create segments which we
     9         kx   // can't distinguish.  Unless of course we are using a weird linker
     9         kx   // script or overlapping --section-start options.  We could also get
     9         kx   // here if plugins want unique segments for subsets of sections.
     9         kx   gold_assert(this->script_options_->saw_phdrs_clause()
     9         kx 	      || parameters->options().any_section_start()
     9         kx 	      || this->is_unique_segment_for_sections_specified()
     9         kx 	      || parameters->options().text_unlikely_segment());
     9         kx   return false;
     9         kx }
     9         kx 
     9         kx // Increase OFF so that it is congruent to ADDR modulo ABI_PAGESIZE.
     9         kx 
     9         kx static off_t
     9         kx align_file_offset(off_t off, uint64_t addr, uint64_t abi_pagesize)
     9         kx {
     9         kx   uint64_t unsigned_off = off;
     9         kx   uint64_t aligned_off = ((unsigned_off & ~(abi_pagesize - 1))
     9         kx 			  | (addr & (abi_pagesize - 1)));
     9         kx   if (aligned_off < unsigned_off)
     9         kx     aligned_off += abi_pagesize;
     9         kx   return aligned_off;
     9         kx }
     9         kx 
     9         kx // On targets where the text segment contains only executable code,
     9         kx // a non-executable segment is never the text segment.
     9         kx 
     9         kx static inline bool
     9         kx is_text_segment(const Target* target, const Output_segment* seg)
     9         kx {
     9         kx   elfcpp::Elf_Xword flags = seg->flags();
     9         kx   if ((flags & elfcpp::PF_W) != 0)
     9         kx     return false;
     9         kx   if ((flags & elfcpp::PF_X) == 0)
     9         kx     return !target->isolate_execinstr();
     9         kx   return true;
     9         kx }
     9         kx 
     9         kx // Set the file offsets of all the segments, and all the sections they
     9         kx // contain.  They have all been created.  LOAD_SEG must be laid out
     9         kx // first.  Return the offset of the data to follow.
     9         kx 
     9         kx off_t
     9         kx Layout::set_segment_offsets(const Target* target, Output_segment* load_seg,
     9         kx 			    unsigned int* pshndx)
     9         kx {
     9         kx   // Sort them into the final order.  We use a stable sort so that we
     9         kx   // don't randomize the order of indistinguishable segments created
     9         kx   // by linker scripts.
     9         kx   std::stable_sort(this->segment_list_.begin(), this->segment_list_.end(),
     9         kx 		   Layout::Compare_segments(this));
     9         kx 
     9         kx   // Find the PT_LOAD segments, and set their addresses and offsets
     9         kx   // and their section's addresses and offsets.
     9         kx   uint64_t start_addr;
     9         kx   if (parameters->options().user_set_Ttext())
     9         kx     start_addr = parameters->options().Ttext();
     9         kx   else if (parameters->options().output_is_position_independent())
     9         kx     start_addr = 0;
     9         kx   else
     9         kx     start_addr = target->default_text_segment_address();
     9         kx 
     9         kx   uint64_t addr = start_addr;
     9         kx   off_t off = 0;
     9         kx 
     9         kx   // If LOAD_SEG is NULL, then the file header and segment headers
     9         kx   // will not be loadable.  But they still need to be at offset 0 in
     9         kx   // the file.  Set their offsets now.
     9         kx   if (load_seg == NULL)
     9         kx     {
     9         kx       for (Data_list::iterator p = this->special_output_list_.begin();
     9         kx 	   p != this->special_output_list_.end();
     9         kx 	   ++p)
     9         kx 	{
     9         kx 	  off = align_address(off, (*p)->addralign());
     9         kx 	  (*p)->set_address_and_file_offset(0, off);
     9         kx 	  off += (*p)->data_size();
     9         kx 	}
     9         kx     }
     9         kx 
     9         kx   unsigned int increase_relro = this->increase_relro_;
     9         kx   if (this->script_options_->saw_sections_clause())
     9         kx     increase_relro = 0;
     9         kx 
     9         kx   const bool check_sections = parameters->options().check_sections();
     9         kx   Output_segment* last_load_segment = NULL;
     9         kx 
     9         kx   unsigned int shndx_begin = *pshndx;
     9         kx   unsigned int shndx_load_seg = *pshndx;
     9         kx 
     9         kx   for (Segment_list::iterator p = this->segment_list_.begin();
     9         kx        p != this->segment_list_.end();
     9         kx        ++p)
     9         kx     {
     9         kx       if ((*p)->type() == elfcpp::PT_LOAD)
     9         kx 	{
     9         kx 	  if (target->isolate_execinstr())
     9         kx 	    {
     9         kx 	      // When we hit the segment that should contain the
     9         kx 	      // file headers, reset the file offset so we place
     9         kx 	      // it and subsequent segments appropriately.
     9         kx 	      // We'll fix up the preceding segments below.
     9         kx 	      if (load_seg == *p)
     9         kx 		{
     9         kx 		  if (off == 0)
     9         kx 		    load_seg = NULL;
     9         kx 		  else
     9         kx 		    {
     9         kx 		      off = 0;
     9         kx 		      shndx_load_seg = *pshndx;
     9         kx 		    }
     9         kx 		}
     9         kx 	    }
     9         kx 	  else
     9         kx 	    {
     9         kx 	      // Verify that the file headers fall into the first segment.
     9         kx 	      if (load_seg != NULL && load_seg != *p)
     9         kx 		gold_unreachable();
     9         kx 	      load_seg = NULL;
     9         kx 	    }
     9         kx 
     9         kx 	  bool are_addresses_set = (*p)->are_addresses_set();
     9         kx 	  if (are_addresses_set)
     9         kx 	    {
     9         kx 	      // When it comes to setting file offsets, we care about
     9         kx 	      // the physical address.
     9         kx 	      addr = (*p)->paddr();
     9         kx 	    }
     9         kx 	  else if (parameters->options().user_set_Ttext()
     9         kx 		   && (parameters->options().omagic()
     9         kx 		       || is_text_segment(target, *p)))
     9         kx 	    {
     9         kx 	      are_addresses_set = true;
     9         kx 	    }
     9         kx 	  else if (parameters->options().user_set_Trodata_segment()
     9         kx 		   && ((*p)->flags() & (elfcpp::PF_W | elfcpp::PF_X)) == 0)
     9         kx 	    {
     9         kx 	      addr = parameters->options().Trodata_segment();
     9         kx 	      are_addresses_set = true;
     9         kx 	    }
     9         kx 	  else if (parameters->options().user_set_Tdata()
     9         kx 		   && ((*p)->flags() & elfcpp::PF_W) != 0
     9         kx 		   && (!parameters->options().user_set_Tbss()
     9         kx 		       || (*p)->has_any_data_sections()))
     9         kx 	    {
     9         kx 	      addr = parameters->options().Tdata();
     9         kx 	      are_addresses_set = true;
     9         kx 	    }
     9         kx 	  else if (parameters->options().user_set_Tbss()
     9         kx 		   && ((*p)->flags() & elfcpp::PF_W) != 0
     9         kx 		   && !(*p)->has_any_data_sections())
     9         kx 	    {
     9         kx 	      addr = parameters->options().Tbss();
     9         kx 	      are_addresses_set = true;
     9         kx 	    }
     9         kx 
     9         kx 	  uint64_t orig_addr = addr;
     9         kx 	  uint64_t orig_off = off;
     9         kx 
     9         kx 	  uint64_t aligned_addr = 0;
     9         kx 	  uint64_t abi_pagesize = target->abi_pagesize();
     9         kx 	  uint64_t common_pagesize = target->common_pagesize();
     9         kx 
     9         kx 	  if (!parameters->options().nmagic()
     9         kx 	      && !parameters->options().omagic())
     9         kx 	    (*p)->set_minimum_p_align(abi_pagesize);
     9         kx 
     9         kx 	  if (!are_addresses_set)
     9         kx 	    {
     9         kx 	      // Skip the address forward one page, maintaining the same
     9         kx 	      // position within the page.  This lets us store both segments
     9         kx 	      // overlapping on a single page in the file, but the loader will
     9         kx 	      // put them on different pages in memory. We will revisit this
     9         kx 	      // decision once we know the size of the segment.
     9         kx 
     9         kx 	      uint64_t max_align = (*p)->maximum_alignment();
     9         kx 	      if (max_align > abi_pagesize)
     9         kx 		addr = align_address(addr, max_align);
     9         kx 	      aligned_addr = addr;
     9         kx 
     9         kx 	      if (load_seg == *p)
     9         kx 		{
     9         kx 		  // This is the segment that will contain the file
     9         kx 		  // headers, so its offset will have to be exactly zero.
     9         kx 		  gold_assert(orig_off == 0);
     9         kx 
     9         kx 		  // If the target wants a fixed minimum distance from the
     9         kx 		  // text segment to the read-only segment, move up now.
     9         kx 		  uint64_t min_addr =
     9         kx 		    start_addr + (parameters->options().user_set_rosegment_gap()
     9         kx 				  ? parameters->options().rosegment_gap()
     9         kx 				  : target->rosegment_gap());
     9         kx 		  if (addr < min_addr)
     9         kx 		    addr = min_addr;
     9         kx 
     9         kx 		  // But this is not the first segment!  To make its
     9         kx 		  // address congruent with its offset, that address better
     9         kx 		  // be aligned to the ABI-mandated page size.
     9         kx 		  addr = align_address(addr, abi_pagesize);
     9         kx 		  aligned_addr = addr;
     9         kx 		}
     9         kx 	      else
     9         kx 		{
     9         kx 		  if ((addr & (abi_pagesize - 1)) != 0)
     9         kx 		    addr = addr + abi_pagesize;
     9         kx 
     9         kx 		  off = orig_off + ((addr - orig_addr) & (abi_pagesize - 1));
     9         kx 		}
     9         kx 	    }
     9         kx 
     9         kx 	  if (!parameters->options().nmagic()
     9         kx 	      && !parameters->options().omagic())
     9         kx 	    {
     9         kx 	      // Here we are also taking care of the case when
     9         kx 	      // the maximum segment alignment is larger than the page size.
     9         kx 	      off = align_file_offset(off, addr,
     9         kx 				      std::max(abi_pagesize,
     9         kx 					       (*p)->maximum_alignment()));
     9         kx 	    }
     9         kx 	  else
     9         kx 	    {
     9         kx 	      // This is -N or -n with a section script which prevents
     9         kx 	      // us from using a load segment.  We need to ensure that
     9         kx 	      // the file offset is aligned to the alignment of the
     9         kx 	      // segment.  This is because the linker script
     9         kx 	      // implicitly assumed a zero offset.  If we don't align
     9         kx 	      // here, then the alignment of the sections in the
     9         kx 	      // linker script may not match the alignment of the
     9         kx 	      // sections in the set_section_addresses call below,
     9         kx 	      // causing an error about dot moving backward.
     9         kx 	      off = align_address(off, (*p)->maximum_alignment());
     9         kx 	    }
     9         kx 
     9         kx 	  unsigned int shndx_hold = *pshndx;
     9         kx 	  bool has_relro = false;
     9         kx 	  uint64_t new_addr = (*p)->set_section_addresses(target, this,
     9         kx 							  false, addr,
     9         kx 							  &increase_relro,
     9         kx 							  &has_relro,
     9         kx 							  &off, pshndx);
     9         kx 
     9         kx 	  // Now that we know the size of this segment, we may be able
     9         kx 	  // to save a page in memory, at the cost of wasting some
     9         kx 	  // file space, by instead aligning to the start of a new
     9         kx 	  // page.  Here we use the real machine page size rather than
     9         kx 	  // the ABI mandated page size.  If the segment has been
     9         kx 	  // aligned so that the relro data ends at a page boundary,
     9         kx 	  // we do not try to realign it.
     9         kx 
     9         kx 	  if (!are_addresses_set
     9         kx 	      && !has_relro
     9         kx 	      && aligned_addr != addr
     9         kx 	      && !parameters->incremental())
     9         kx 	    {
     9         kx 	      uint64_t first_off = (common_pagesize
     9         kx 				    - (aligned_addr
     9         kx 				       & (common_pagesize - 1)));
     9         kx 	      uint64_t last_off = new_addr & (common_pagesize - 1);
     9         kx 	      if (first_off > 0
     9         kx 		  && last_off > 0
     9         kx 		  && ((aligned_addr & ~ (common_pagesize - 1))
     9         kx 		      != (new_addr & ~ (common_pagesize - 1)))
     9         kx 		  && first_off + last_off <= common_pagesize)
     9         kx 		{
     9         kx 		  *pshndx = shndx_hold;
     9         kx 		  addr = align_address(aligned_addr, common_pagesize);
     9         kx 		  addr = align_address(addr, (*p)->maximum_alignment());
     9         kx 		  if ((addr & (abi_pagesize - 1)) != 0)
     9         kx 		    addr = addr + abi_pagesize;
     9         kx 		  off = orig_off + ((addr - orig_addr) & (abi_pagesize - 1));
     9         kx 		  off = align_file_offset(off, addr, abi_pagesize);
     9         kx 
     9         kx 		  increase_relro = this->increase_relro_;
     9         kx 		  if (this->script_options_->saw_sections_clause())
     9         kx 		    increase_relro = 0;
     9         kx 		  has_relro = false;
     9         kx 
     9         kx 		  new_addr = (*p)->set_section_addresses(target, this,
     9         kx 							 true, addr,
     9         kx 							 &increase_relro,
     9         kx 							 &has_relro,
     9         kx 							 &off, pshndx);
     9         kx 		}
     9         kx 	    }
     9         kx 
     9         kx 	  addr = new_addr;
     9         kx 
     9         kx 	  // Implement --check-sections.  We know that the segments
     9         kx 	  // are sorted by LMA.
     9         kx 	  if (check_sections && last_load_segment != NULL)
     9         kx 	    {
     9         kx 	      gold_assert(last_load_segment->paddr() <= (*p)->paddr());
     9         kx 	      if (last_load_segment->paddr() + last_load_segment->memsz()
     9         kx 		  > (*p)->paddr())
     9         kx 		{
     9         kx 		  unsigned long long lb1 = last_load_segment->paddr();
     9         kx 		  unsigned long long le1 = lb1 + last_load_segment->memsz();
     9         kx 		  unsigned long long lb2 = (*p)->paddr();
     9         kx 		  unsigned long long le2 = lb2 + (*p)->memsz();
     9         kx 		  gold_error(_("load segment overlap [0x%llx -> 0x%llx] and "
     9         kx 			       "[0x%llx -> 0x%llx]"),
     9         kx 			     lb1, le1, lb2, le2);
     9         kx 		}
     9         kx 	    }
     9         kx 	  last_load_segment = *p;
     9         kx 	}
     9         kx     }
     9         kx 
     9         kx   if (load_seg != NULL && target->isolate_execinstr())
     9         kx     {
     9         kx       // Process the early segments again, setting their file offsets
     9         kx       // so they land after the segments starting at LOAD_SEG.
     9         kx       off = align_file_offset(off, 0, target->abi_pagesize());
     9         kx 
     9         kx       this->reset_relax_output();
     9         kx 
     9         kx       for (Segment_list::iterator p = this->segment_list_.begin();
     9         kx 	   *p != load_seg;
     9         kx 	   ++p)
     9         kx 	{
     9         kx 	  if ((*p)->type() == elfcpp::PT_LOAD)
     9         kx 	    {
     9         kx 	      // We repeat the whole job of assigning addresses and
     9         kx 	      // offsets, but we really only want to change the offsets and
     9         kx 	      // must ensure that the addresses all come out the same as
     9         kx 	      // they did the first time through.
     9         kx 	      bool has_relro = false;
     9         kx 	      const uint64_t old_addr = (*p)->vaddr();
     9         kx 	      const uint64_t old_end = old_addr + (*p)->memsz();
     9         kx 	      uint64_t new_addr = (*p)->set_section_addresses(target, this,
     9         kx 							      true, old_addr,
     9         kx 							      &increase_relro,
     9         kx 							      &has_relro,
     9         kx 							      &off,
     9         kx 							      &shndx_begin);
     9         kx 	      gold_assert(new_addr == old_end);
     9         kx 	    }
     9         kx 	}
     9         kx 
     9         kx       gold_assert(shndx_begin == shndx_load_seg);
     9         kx     }
     9         kx 
     9         kx   // Handle the non-PT_LOAD segments, setting their offsets from their
     9         kx   // section's offsets.
     9         kx   for (Segment_list::iterator p = this->segment_list_.begin();
     9         kx        p != this->segment_list_.end();
     9         kx        ++p)
     9         kx     {
     9         kx       // PT_GNU_STACK was set up correctly when it was created.
     9         kx       if ((*p)->type() != elfcpp::PT_LOAD
     9         kx 	  && (*p)->type() != elfcpp::PT_GNU_STACK)
     9         kx 	(*p)->set_offset((*p)->type() == elfcpp::PT_GNU_RELRO
     9         kx 			 ? increase_relro
     9         kx 			 : 0);
     9         kx     }
     9         kx 
     9         kx   // Set the TLS offsets for each section in the PT_TLS segment.
     9         kx   if (this->tls_segment_ != NULL)
     9         kx     this->tls_segment_->set_tls_offsets();
     9         kx 
     9         kx   return off;
     9         kx }
     9         kx 
     9         kx // Set the offsets of all the allocated sections when doing a
     9         kx // relocatable link.  This does the same jobs as set_segment_offsets,
     9         kx // only for a relocatable link.
     9         kx 
     9         kx off_t
     9         kx Layout::set_relocatable_section_offsets(Output_data* file_header,
     9         kx 					unsigned int* pshndx)
     9         kx {
     9         kx   off_t off = 0;
     9         kx 
     9         kx   file_header->set_address_and_file_offset(0, 0);
     9         kx   off += file_header->data_size();
     9         kx 
     9         kx   for (Section_list::iterator p = this->section_list_.begin();
     9         kx        p != this->section_list_.end();
     9         kx        ++p)
     9         kx     {
     9         kx       // We skip unallocated sections here, except that group sections
     9         kx       // have to come first.
     9         kx       if (((*p)->flags() & elfcpp::SHF_ALLOC) == 0
     9         kx 	  && (*p)->type() != elfcpp::SHT_GROUP)
     9         kx 	continue;
     9         kx 
     9         kx       off = align_address(off, (*p)->addralign());
     9         kx 
     9         kx       // The linker script might have set the address.
     9         kx       if (!(*p)->is_address_valid())
     9         kx 	(*p)->set_address(0);
     9         kx       (*p)->set_file_offset(off);
     9         kx       (*p)->finalize_data_size();
     9         kx       if ((*p)->type() != elfcpp::SHT_NOBITS)
     9         kx 	off += (*p)->data_size();
     9         kx 
     9         kx       (*p)->set_out_shndx(*pshndx);
     9         kx       ++*pshndx;
     9         kx     }
     9         kx 
     9         kx   return off;
     9         kx }
     9         kx 
     9         kx // Set the file offset of all the sections not associated with a
     9         kx // segment.
     9         kx 
     9         kx off_t
     9         kx Layout::set_section_offsets(off_t off, Layout::Section_offset_pass pass)
     9         kx {
     9         kx   off_t startoff = off;
     9         kx   off_t maxoff = off;
     9         kx 
     9         kx   for (Section_list::iterator p = this->unattached_section_list_.begin();
     9         kx        p != this->unattached_section_list_.end();
     9         kx        ++p)
     9         kx     {
     9         kx       // The symtab section is handled in create_symtab_sections.
     9         kx       if (*p == this->symtab_section_)
     9         kx 	continue;
     9         kx 
     9         kx       // If we've already set the data size, don't set it again.
     9         kx       if ((*p)->is_offset_valid() && (*p)->is_data_size_valid())
     9         kx 	continue;
     9         kx 
     9         kx       if (pass == BEFORE_INPUT_SECTIONS_PASS
     9         kx 	  && (*p)->requires_postprocessing())
     9         kx 	{
     9         kx 	  (*p)->create_postprocessing_buffer();
     9         kx 	  this->any_postprocessing_sections_ = true;
     9         kx 	}
     9         kx 
     9         kx       if (pass == BEFORE_INPUT_SECTIONS_PASS
     9         kx 	  && (*p)->after_input_sections())
     9         kx 	continue;
     9         kx       else if (pass == POSTPROCESSING_SECTIONS_PASS
     9         kx 	       && (!(*p)->after_input_sections()
     9         kx 		   || (*p)->type() == elfcpp::SHT_STRTAB))
     9         kx 	continue;
     9         kx       else if (pass == STRTAB_AFTER_POSTPROCESSING_SECTIONS_PASS
     9         kx 	       && (!(*p)->after_input_sections()
     9         kx 		   || (*p)->type() != elfcpp::SHT_STRTAB))
     9         kx 	continue;
     9         kx 
     9         kx       if (!parameters->incremental_update())
     9         kx 	{
     9         kx 	  off = align_address(off, (*p)->addralign());
     9         kx 	  (*p)->set_file_offset(off);
     9         kx 	  (*p)->finalize_data_size();
     9         kx 	}
     9         kx       else
     9         kx 	{
     9         kx 	  // Incremental update: allocate file space from free list.
     9         kx 	  (*p)->pre_finalize_data_size();
     9         kx 	  off_t current_size = (*p)->current_data_size();
     9         kx 	  off = this->allocate(current_size, (*p)->addralign(), startoff);
     9         kx 	  if (off == -1)
     9         kx 	    {
     9         kx 	      if (is_debugging_enabled(DEBUG_INCREMENTAL))
     9         kx 		this->free_list_.dump();
     9         kx 	      gold_assert((*p)->output_section() != NULL);
     9         kx 	      gold_fallback(_("out of patch space for section %s; "
     9         kx 			      "relink with --incremental-full"),
     9         kx 			    (*p)->output_section()->name());
     9         kx 	    }
     9         kx 	  (*p)->set_file_offset(off);
     9         kx 	  (*p)->finalize_data_size();
     9         kx 	  if ((*p)->data_size() > current_size)
     9         kx 	    {
     9         kx 	      gold_assert((*p)->output_section() != NULL);
     9         kx 	      gold_fallback(_("%s: section changed size; "
     9         kx 			      "relink with --incremental-full"),
     9         kx 			    (*p)->output_section()->name());
     9         kx 	    }
     9         kx 	  gold_debug(DEBUG_INCREMENTAL,
     9         kx 		     "set_section_offsets: %08lx %08lx %s",
     9         kx 		     static_cast<long>(off),
     9         kx 		     static_cast<long>((*p)->data_size()),
     9         kx 		     ((*p)->output_section() != NULL
     9         kx 		      ? (*p)->output_section()->name() : "(special)"));
     9         kx 	}
     9         kx 
     9         kx       off += (*p)->data_size();
     9         kx       if (off > maxoff)
     9         kx 	maxoff = off;
     9         kx 
     9         kx       // At this point the name must be set.
     9         kx       if (pass != STRTAB_AFTER_POSTPROCESSING_SECTIONS_PASS)
     9         kx 	this->namepool_.add((*p)->name(), false, NULL);
     9         kx     }
     9         kx   return maxoff;
     9         kx }
     9         kx 
     9         kx // Set the section indexes of all the sections not associated with a
     9         kx // segment.
     9         kx 
     9         kx unsigned int
     9         kx Layout::set_section_indexes(unsigned int shndx)
     9         kx {
     9         kx   for (Section_list::iterator p = this->unattached_section_list_.begin();
     9         kx        p != this->unattached_section_list_.end();
     9         kx        ++p)
     9         kx     {
     9         kx       if (!(*p)->has_out_shndx())
     9         kx 	{
     9         kx 	  (*p)->set_out_shndx(shndx);
     9         kx 	  ++shndx;
     9         kx 	}
     9         kx     }
     9         kx   return shndx;
     9         kx }
     9         kx 
     9         kx // Set the section addresses according to the linker script.  This is
     9         kx // only called when we see a SECTIONS clause.  This returns the
     9         kx // program segment which should hold the file header and segment
     9         kx // headers, if any.  It will return NULL if they should not be in a
     9         kx // segment.
     9         kx 
     9         kx Output_segment*
     9         kx Layout::set_section_addresses_from_script(Symbol_table* symtab)
     9         kx {
     9         kx   Script_sections* ss = this->script_options_->script_sections();
     9         kx   gold_assert(ss->saw_sections_clause());
     9         kx   return this->script_options_->set_section_addresses(symtab, this);
     9         kx }
     9         kx 
     9         kx // Place the orphan sections in the linker script.
     9         kx 
     9         kx void
     9         kx Layout::place_orphan_sections_in_script()
     9         kx {
     9         kx   Script_sections* ss = this->script_options_->script_sections();
     9         kx   gold_assert(ss->saw_sections_clause());
     9         kx 
     9         kx   // Place each orphaned output section in the script.
     9         kx   for (Section_list::iterator p = this->section_list_.begin();
     9         kx        p != this->section_list_.end();
     9         kx        ++p)
     9         kx     {
     9         kx       if (!(*p)->found_in_sections_clause())
     9         kx 	ss->place_orphan(*p);
     9         kx     }
     9         kx }
     9         kx 
     9         kx // Count the local symbols in the regular symbol table and the dynamic
     9         kx // symbol table, and build the respective string pools.
     9         kx 
     9         kx void
     9         kx Layout::count_local_symbols(const Task* task,
     9         kx 			    const Input_objects* input_objects)
     9         kx {
     9         kx   // First, figure out an upper bound on the number of symbols we'll
     9         kx   // be inserting into each pool.  This helps us create the pools with
     9         kx   // the right size, to avoid unnecessary hashtable resizing.
     9         kx   unsigned int symbol_count = 0;
     9         kx   for (Input_objects::Relobj_iterator p = input_objects->relobj_begin();
     9         kx        p != input_objects->relobj_end();
     9         kx        ++p)
     9         kx     symbol_count += (*p)->local_symbol_count();
     9         kx 
     9         kx   // Go from "upper bound" to "estimate."  We overcount for two
     9         kx   // reasons: we double-count symbols that occur in more than one
     9         kx   // object file, and we count symbols that are dropped from the
     9         kx   // output.  Add it all together and assume we overcount by 100%.
     9         kx   symbol_count /= 2;
     9         kx 
     9         kx   // We assume all symbols will go into both the sympool and dynpool.
     9         kx   this->sympool_.reserve(symbol_count);
     9         kx   this->dynpool_.reserve(symbol_count);
     9         kx 
     9         kx   for (Input_objects::Relobj_iterator p = input_objects->relobj_begin();
     9         kx        p != input_objects->relobj_end();
     9         kx        ++p)
     9         kx     {
     9         kx       Task_lock_obj<Object> tlo(task, *p);
     9         kx       (*p)->count_local_symbols(&this->sympool_, &this->dynpool_);
     9         kx     }
     9         kx }
     9         kx 
     9         kx // Create the symbol table sections.  Here we also set the final
     9         kx // values of the symbols.  At this point all the loadable sections are
     9         kx // fully laid out.  SHNUM is the number of sections so far.
     9         kx 
     9         kx void
     9         kx Layout::create_symtab_sections(const Input_objects* input_objects,
     9         kx 			       Symbol_table* symtab,
     9         kx 			       unsigned int shnum,
     9         kx 			       off_t* poff,
     9         kx 			       unsigned int local_dynamic_count)
     9         kx {
     9         kx   int symsize;
     9         kx   unsigned int align;
     9         kx   if (parameters->target().get_size() == 32)
     9         kx     {
     9         kx       symsize = elfcpp::Elf_sizes<32>::sym_size;
     9         kx       align = 4;
     9         kx     }
     9         kx   else if (parameters->target().get_size() == 64)
     9         kx     {
     9         kx       symsize = elfcpp::Elf_sizes<64>::sym_size;
     9         kx       align = 8;
     9         kx     }
     9         kx   else
     9         kx     gold_unreachable();
     9         kx 
     9         kx   // Compute file offsets relative to the start of the symtab section.
     9         kx   off_t off = 0;
     9         kx 
     9         kx   // Save space for the dummy symbol at the start of the section.  We
     9         kx   // never bother to write this out--it will just be left as zero.
     9         kx   off += symsize;
     9         kx   unsigned int local_symbol_index = 1;
     9         kx 
     9         kx   // Add STT_SECTION symbols for each Output section which needs one.
     9         kx   for (Section_list::iterator p = this->section_list_.begin();
     9         kx        p != this->section_list_.end();
     9         kx        ++p)
     9         kx     {
     9         kx       if (!(*p)->needs_symtab_index())
     9         kx 	(*p)->set_symtab_index(-1U);
     9         kx       else
     9         kx 	{
     9         kx 	  (*p)->set_symtab_index(local_symbol_index);
     9         kx 	  ++local_symbol_index;
     9         kx 	  off += symsize;
     9         kx 	}
     9         kx     }
     9         kx 
     9         kx   for (Input_objects::Relobj_iterator p = input_objects->relobj_begin();
     9         kx        p != input_objects->relobj_end();
     9         kx        ++p)
     9         kx     {
     9         kx       unsigned int index = (*p)->finalize_local_symbols(local_symbol_index,
     9         kx 							off, symtab);
     9         kx       off += (index - local_symbol_index) * symsize;
     9         kx       local_symbol_index = index;
     9         kx     }
     9         kx 
     9         kx   unsigned int local_symcount = local_symbol_index;
     9         kx   gold_assert(static_cast<off_t>(local_symcount * symsize) == off);
     9         kx 
     9         kx   off_t dynoff;
     9         kx   size_t dyncount;
     9         kx   if (this->dynsym_section_ == NULL)
     9         kx     {
     9         kx       dynoff = 0;
     9         kx       dyncount = 0;
     9         kx     }
     9         kx   else
     9         kx     {
     9         kx       off_t locsize = local_dynamic_count * this->dynsym_section_->entsize();
     9         kx       dynoff = this->dynsym_section_->offset() + locsize;
     9         kx       dyncount = (this->dynsym_section_->data_size() - locsize) / symsize;
     9         kx       gold_assert(static_cast<off_t>(dyncount * symsize)
     9         kx 		  == this->dynsym_section_->data_size() - locsize);
     9         kx     }
     9         kx 
     9         kx   off_t global_off = off;
     9         kx   off = symtab->finalize(off, dynoff, local_dynamic_count, dyncount,
     9         kx 			 &this->sympool_, &local_symcount);
     9         kx 
     9         kx   if (!parameters->options().strip_all())
     9         kx     {
     9         kx       this->sympool_.set_string_offsets();
     9         kx 
     9         kx       const char* symtab_name = this->namepool_.add(".symtab", false, NULL);
     9         kx       Output_section* osymtab = this->make_output_section(symtab_name,
     9         kx 							  elfcpp::SHT_SYMTAB,
     9         kx 							  0, ORDER_INVALID,
     9         kx 							  false);
     9         kx       this->symtab_section_ = osymtab;
     9         kx 
     9         kx       Output_section_data* pos = new Output_data_fixed_space(off, align,
     9         kx 							     "** symtab");
     9         kx       osymtab->add_output_section_data(pos);
     9         kx 
     9         kx       // We generate a .symtab_shndx section if we have more than
     9         kx       // SHN_LORESERVE sections.  Technically it is possible that we
     9         kx       // don't need one, because it is possible that there are no
     9         kx       // symbols in any of sections with indexes larger than
     9         kx       // SHN_LORESERVE.  That is probably unusual, though, and it is
     9         kx       // easier to always create one than to compute section indexes
     9         kx       // twice (once here, once when writing out the symbols).
     9         kx       if (shnum >= elfcpp::SHN_LORESERVE)
     9         kx 	{
     9         kx 	  const char* symtab_xindex_name = this->namepool_.add(".symtab_shndx",
     9         kx 							       false, NULL);
     9         kx 	  Output_section* osymtab_xindex =
     9         kx 	    this->make_output_section(symtab_xindex_name,
     9         kx 				      elfcpp::SHT_SYMTAB_SHNDX, 0,
     9         kx 				      ORDER_INVALID, false);
     9         kx 
     9         kx 	  size_t symcount = off / symsize;
     9         kx 	  this->symtab_xindex_ = new Output_symtab_xindex(symcount);
     9         kx 
     9         kx 	  osymtab_xindex->add_output_section_data(this->symtab_xindex_);
     9         kx 
     9         kx 	  osymtab_xindex->set_link_section(osymtab);
     9         kx 	  osymtab_xindex->set_addralign(4);
     9         kx 	  osymtab_xindex->set_entsize(4);
     9         kx 
     9         kx 	  osymtab_xindex->set_after_input_sections();
     9         kx 
     9         kx 	  // This tells the driver code to wait until the symbol table
     9         kx 	  // has written out before writing out the postprocessing
     9         kx 	  // sections, including the .symtab_shndx section.
     9         kx 	  this->any_postprocessing_sections_ = true;
     9         kx 	}
     9         kx 
     9         kx       const char* strtab_name = this->namepool_.add(".strtab", false, NULL);
     9         kx       Output_section* ostrtab = this->make_output_section(strtab_name,
     9         kx 							  elfcpp::SHT_STRTAB,
     9         kx 							  0, ORDER_INVALID,
     9         kx 							  false);
     9         kx 
     9         kx       Output_section_data* pstr = new Output_data_strtab(&this->sympool_);
     9         kx       ostrtab->add_output_section_data(pstr);
     9         kx 
     9         kx       off_t symtab_off;
     9         kx       if (!parameters->incremental_update())
     9         kx 	symtab_off = align_address(*poff, align);
     9         kx       else
     9         kx 	{
     9         kx 	  symtab_off = this->allocate(off, align, *poff);
     9         kx 	  if (off == -1)
     9         kx 	    gold_fallback(_("out of patch space for symbol table; "
     9         kx 			    "relink with --incremental-full"));
     9         kx 	  gold_debug(DEBUG_INCREMENTAL,
     9         kx 		     "create_symtab_sections: %08lx %08lx .symtab",
     9         kx 		     static_cast<long>(symtab_off),
     9         kx 		     static_cast<long>(off));
     9         kx 	}
     9         kx 
     9         kx       symtab->set_file_offset(symtab_off + global_off);
     9         kx       osymtab->set_file_offset(symtab_off);
     9         kx       osymtab->finalize_data_size();
     9         kx       osymtab->set_link_section(ostrtab);
     9         kx       osymtab->set_info(local_symcount);
     9         kx       osymtab->set_entsize(symsize);
     9         kx 
     9         kx       if (symtab_off + off > *poff)
     9         kx 	*poff = symtab_off + off;
     9         kx     }
     9         kx }
     9         kx 
     9         kx // Create the .shstrtab section, which holds the names of the
     9         kx // sections.  At the time this is called, we have created all the
     9         kx // output sections except .shstrtab itself.
     9         kx 
     9         kx Output_section*
     9         kx Layout::create_shstrtab()
     9         kx {
     9         kx   // FIXME: We don't need to create a .shstrtab section if we are
     9         kx   // stripping everything.
     9         kx 
     9         kx   const char* name = this->namepool_.add(".shstrtab", false, NULL);
     9         kx 
     9         kx   Output_section* os = this->make_output_section(name, elfcpp::SHT_STRTAB, 0,
     9         kx 						 ORDER_INVALID, false);
     9         kx 
     9         kx   if (strcmp(parameters->options().compress_debug_sections(), "none") != 0)
     9         kx     {
     9         kx       // We can't write out this section until we've set all the
     9         kx       // section names, and we don't set the names of compressed
     9         kx       // output sections until relocations are complete.  FIXME: With
     9         kx       // the current names we use, this is unnecessary.
     9         kx       os->set_after_input_sections();
     9         kx     }
     9         kx 
     9         kx   Output_section_data* posd = new Output_data_strtab(&this->namepool_);
     9         kx   os->add_output_section_data(posd);
     9         kx 
     9         kx   return os;
     9         kx }
     9         kx 
     9         kx // Create the section headers.  SIZE is 32 or 64.  OFF is the file
     9         kx // offset.
     9         kx 
     9         kx void
     9         kx Layout::create_shdrs(const Output_section* shstrtab_section, off_t* poff)
     9         kx {
     9         kx   Output_section_headers* oshdrs;
     9         kx   oshdrs = new Output_section_headers(this,
     9         kx 				      &this->segment_list_,
     9         kx 				      &this->section_list_,
     9         kx 				      &this->unattached_section_list_,
     9         kx 				      &this->namepool_,
     9         kx 				      shstrtab_section);
     9         kx   off_t off;
     9         kx   if (!parameters->incremental_update())
     9         kx     off = align_address(*poff, oshdrs->addralign());
     9         kx   else
     9         kx     {
     9         kx       oshdrs->pre_finalize_data_size();
     9         kx       off = this->allocate(oshdrs->data_size(), oshdrs->addralign(), *poff);
     9         kx       if (off == -1)
     9         kx 	  gold_fallback(_("out of patch space for section header table; "
     9         kx 			  "relink with --incremental-full"));
     9         kx       gold_debug(DEBUG_INCREMENTAL,
     9         kx 		 "create_shdrs: %08lx %08lx (section header table)",
     9         kx 		 static_cast<long>(off),
     9         kx 		 static_cast<long>(off + oshdrs->data_size()));
     9         kx     }
     9         kx   oshdrs->set_address_and_file_offset(0, off);
     9         kx   off += oshdrs->data_size();
     9         kx   if (off > *poff)
     9         kx     *poff = off;
     9         kx   this->section_headers_ = oshdrs;
     9         kx }
     9         kx 
     9         kx // Count the allocated sections.
     9         kx 
     9         kx size_t
     9         kx Layout::allocated_output_section_count() const
     9         kx {
     9         kx   size_t section_count = 0;
     9         kx   for (Segment_list::const_iterator p = this->segment_list_.begin();
     9         kx        p != this->segment_list_.end();
     9         kx        ++p)
     9         kx     section_count += (*p)->output_section_count();
     9         kx   return section_count;
     9         kx }
     9         kx 
     9         kx // Create the dynamic symbol table.
     9         kx // *PLOCAL_DYNAMIC_COUNT will be set to the number of local symbols
     9         kx // from input objects, and *PFORCED_LOCAL_DYNAMIC_COUNT will be set
     9         kx // to the number of global symbols that have been forced local.
     9         kx // We need to remember the former because the forced-local symbols are
     9         kx // written along with the global symbols in Symtab::write_globals().
     9         kx 
     9         kx void
     9         kx Layout::create_dynamic_symtab(const Input_objects* input_objects,
     9         kx 			      Symbol_table* symtab,
     9         kx 			      Output_section** pdynstr,
     9         kx 			      unsigned int* plocal_dynamic_count,
     9         kx 			      unsigned int* pforced_local_dynamic_count,
     9         kx 			      std::vector<Symbol*>* pdynamic_symbols,
     9         kx 			      Versions* pversions)
     9         kx {
     9         kx   // Count all the symbols in the dynamic symbol table, and set the
     9         kx   // dynamic symbol indexes.
     9         kx 
     9         kx   // Skip symbol 0, which is always all zeroes.
     9         kx   unsigned int index = 1;
     9         kx 
     9         kx   // Add STT_SECTION symbols for each Output section which needs one.
     9         kx   for (Section_list::iterator p = this->section_list_.begin();
     9         kx        p != this->section_list_.end();
     9         kx        ++p)
     9         kx     {
     9         kx       if (!(*p)->needs_dynsym_index())
     9         kx 	(*p)->set_dynsym_index(-1U);
     9         kx       else
     9         kx 	{
     9         kx 	  (*p)->set_dynsym_index(index);
     9         kx 	  ++index;
     9         kx 	}
     9         kx     }
     9         kx 
     9         kx   // Count the local symbols that need to go in the dynamic symbol table,
     9         kx   // and set the dynamic symbol indexes.
     9         kx   for (Input_objects::Relobj_iterator p = input_objects->relobj_begin();
     9         kx        p != input_objects->relobj_end();
     9         kx        ++p)
     9         kx     {
     9         kx       unsigned int new_index = (*p)->set_local_dynsym_indexes(index);
     9         kx       index = new_index;
     9         kx     }
     9         kx 
     9         kx   unsigned int local_symcount = index;
     9         kx   unsigned int forced_local_count = 0;
     9         kx 
     9         kx   index = symtab->set_dynsym_indexes(index, &forced_local_count,
     9         kx 				     pdynamic_symbols, &this->dynpool_,
     9         kx 				     pversions);
     9         kx 
     9         kx   *plocal_dynamic_count = local_symcount;
     9         kx   *pforced_local_dynamic_count = forced_local_count;
     9         kx 
     9         kx   int symsize;
     9         kx   unsigned int align;
     9         kx   const int size = parameters->target().get_size();
     9         kx   if (size == 32)
     9         kx     {
     9         kx       symsize = elfcpp::Elf_sizes<32>::sym_size;
     9         kx       align = 4;
     9         kx     }
     9         kx   else if (size == 64)
     9         kx     {
     9         kx       symsize = elfcpp::Elf_sizes<64>::sym_size;
     9         kx       align = 8;
     9         kx     }
     9         kx   else
     9         kx     gold_unreachable();
     9         kx 
     9         kx   // Create the dynamic symbol table section.
     9         kx 
     9         kx   Output_section* dynsym = this->choose_output_section(NULL, ".dynsym",
     9         kx 						       elfcpp::SHT_DYNSYM,
     9         kx 						       elfcpp::SHF_ALLOC,
     9         kx 						       false,
     9         kx 						       ORDER_DYNAMIC_LINKER,
     9         kx 						       false, false, false);
     9         kx 
     9         kx   // Check for NULL as a linker script may discard .dynsym.
     9         kx   if (dynsym != NULL)
     9         kx     {
     9         kx       Output_section_data* odata = new Output_data_fixed_space(index * symsize,
     9         kx 							       align,
     9         kx 							       "** dynsym");
     9         kx       dynsym->add_output_section_data(odata);
     9         kx 
     9         kx       dynsym->set_info(local_symcount + forced_local_count);
     9         kx       dynsym->set_entsize(symsize);
     9         kx       dynsym->set_addralign(align);
     9         kx 
     9         kx       this->dynsym_section_ = dynsym;
     9         kx     }
     9         kx 
     9         kx   Output_data_dynamic* const odyn = this->dynamic_data_;
     9         kx   if (odyn != NULL)
     9         kx     {
     9         kx       odyn->add_section_address(elfcpp::DT_SYMTAB, dynsym);
     9         kx       odyn->add_constant(elfcpp::DT_SYMENT, symsize);
     9         kx     }
     9         kx 
     9         kx   // If there are more than SHN_LORESERVE allocated sections, we
     9         kx   // create a .dynsym_shndx section.  It is possible that we don't
     9         kx   // need one, because it is possible that there are no dynamic
     9         kx   // symbols in any of the sections with indexes larger than
     9         kx   // SHN_LORESERVE.  This is probably unusual, though, and at this
     9         kx   // time we don't know the actual section indexes so it is
     9         kx   // inconvenient to check.
     9         kx   if (this->allocated_output_section_count() >= elfcpp::SHN_LORESERVE)
     9         kx     {
     9         kx       Output_section* dynsym_xindex =
     9         kx 	this->choose_output_section(NULL, ".dynsym_shndx",
     9         kx 				    elfcpp::SHT_SYMTAB_SHNDX,
     9         kx 				    elfcpp::SHF_ALLOC,
     9         kx 				    false, ORDER_DYNAMIC_LINKER, false, false,
     9         kx 				    false);
     9         kx 
     9         kx       if (dynsym_xindex != NULL)
     9         kx 	{
     9         kx 	  this->dynsym_xindex_ = new Output_symtab_xindex(index);
     9         kx 
     9         kx 	  dynsym_xindex->add_output_section_data(this->dynsym_xindex_);
     9         kx 
     9         kx 	  dynsym_xindex->set_link_section(dynsym);
     9         kx 	  dynsym_xindex->set_addralign(4);
     9         kx 	  dynsym_xindex->set_entsize(4);
     9         kx 
     9         kx 	  dynsym_xindex->set_after_input_sections();
     9         kx 
     9         kx 	  // This tells the driver code to wait until the symbol table
     9         kx 	  // has written out before writing out the postprocessing
     9         kx 	  // sections, including the .dynsym_shndx section.
     9         kx 	  this->any_postprocessing_sections_ = true;
     9         kx 	}
     9         kx     }
     9         kx 
     9         kx   // Create the dynamic string table section.
     9         kx 
     9         kx   Output_section* dynstr = this->choose_output_section(NULL, ".dynstr",
     9         kx 						       elfcpp::SHT_STRTAB,
     9         kx 						       elfcpp::SHF_ALLOC,
     9         kx 						       false,
     9         kx 						       ORDER_DYNAMIC_LINKER,
     9         kx 						       false, false, false);
     9         kx   *pdynstr = dynstr;
     9         kx   if (dynstr != NULL)
     9         kx     {
     9         kx       Output_section_data* strdata = new Output_data_strtab(&this->dynpool_);
     9         kx       dynstr->add_output_section_data(strdata);
     9         kx 
     9         kx       if (dynsym != NULL)
     9         kx 	dynsym->set_link_section(dynstr);
     9         kx       if (this->dynamic_section_ != NULL)
     9         kx 	this->dynamic_section_->set_link_section(dynstr);
     9         kx 
     9         kx       if (odyn != NULL)
     9         kx 	{
     9         kx 	  odyn->add_section_address(elfcpp::DT_STRTAB, dynstr);
     9         kx 	  odyn->add_section_size(elfcpp::DT_STRSZ, dynstr);
     9         kx 	}
     9         kx     }
     9         kx 
     9         kx   // Create the hash tables.  The Gnu-style hash table must be
     9         kx   // built first, because it changes the order of the symbols
     9         kx   // in the dynamic symbol table.
     9         kx 
     9         kx   if (strcmp(parameters->options().hash_style(), "gnu") == 0
     9         kx       || strcmp(parameters->options().hash_style(), "both") == 0)
     9         kx     {
     9         kx       unsigned char* phash;
     9         kx       unsigned int hashlen;
     9         kx       Dynobj::create_gnu_hash_table(*pdynamic_symbols,
     9         kx 				    local_symcount + forced_local_count,
     9         kx 				    &phash, &hashlen);
     9         kx 
     9         kx       Output_section* hashsec =
     9         kx 	this->choose_output_section(NULL, ".gnu.hash", elfcpp::SHT_GNU_HASH,
     9         kx 				    elfcpp::SHF_ALLOC, false,
     9         kx 				    ORDER_DYNAMIC_LINKER, false, false,
     9         kx 				    false);
     9         kx 
     9         kx       Output_section_data* hashdata = new Output_data_const_buffer(phash,
     9         kx 								   hashlen,
     9         kx 								   align,
     9         kx 								   "** hash");
     9         kx       if (hashsec != NULL && hashdata != NULL)
     9         kx 	hashsec->add_output_section_data(hashdata);
     9         kx 
     9         kx       if (hashsec != NULL)
     9         kx 	{
     9         kx 	  if (dynsym != NULL)
     9         kx 	    hashsec->set_link_section(dynsym);
     9         kx 
     9         kx 	  // For a 64-bit target, the entries in .gnu.hash do not have
     9         kx 	  // a uniform size, so we only set the entry size for a
     9         kx 	  // 32-bit target.
     9         kx 	  if (parameters->target().get_size() == 32)
     9         kx 	    hashsec->set_entsize(4);
     9         kx 
     9         kx 	  if (odyn != NULL)
     9         kx 	    odyn->add_section_address(elfcpp::DT_GNU_HASH, hashsec);
     9         kx 	}
     9         kx     }
     9         kx 
     9         kx   if (strcmp(parameters->options().hash_style(), "sysv") == 0
     9         kx       || strcmp(parameters->options().hash_style(), "both") == 0)
     9         kx     {
     9         kx       unsigned char* phash;
     9         kx       unsigned int hashlen;
     9         kx       Dynobj::create_elf_hash_table(*pdynamic_symbols,
     9         kx 				    local_symcount + forced_local_count,
     9         kx 				    &phash, &hashlen);
     9         kx 
     9         kx       Output_section* hashsec =
     9         kx 	this->choose_output_section(NULL, ".hash", elfcpp::SHT_HASH,
     9         kx 				    elfcpp::SHF_ALLOC, false,
     9         kx 				    ORDER_DYNAMIC_LINKER, false, false,
     9         kx 				    false);
     9         kx 
     9         kx       Output_section_data* hashdata = new Output_data_const_buffer(phash,
     9         kx 								   hashlen,
     9         kx 								   align,
     9         kx 								   "** hash");
     9         kx       if (hashsec != NULL && hashdata != NULL)
     9         kx 	hashsec->add_output_section_data(hashdata);
     9         kx 
     9         kx       if (hashsec != NULL)
     9         kx 	{
     9         kx 	  if (dynsym != NULL)
     9         kx 	    hashsec->set_link_section(dynsym);
     9         kx 	  hashsec->set_entsize(parameters->target().hash_entry_size() / 8);
     9         kx 	}
     9         kx 
     9         kx       if (odyn != NULL)
     9         kx 	odyn->add_section_address(elfcpp::DT_HASH, hashsec);
     9         kx     }
     9         kx }
     9         kx 
     9         kx // Assign offsets to each local portion of the dynamic symbol table.
     9         kx 
     9         kx void
     9         kx Layout::assign_local_dynsym_offsets(const Input_objects* input_objects)
     9         kx {
     9         kx   Output_section* dynsym = this->dynsym_section_;
     9         kx   if (dynsym == NULL)
     9         kx     return;
     9         kx 
     9         kx   off_t off = dynsym->offset();
     9         kx 
     9         kx   // Skip the dummy symbol at the start of the section.
     9         kx   off += dynsym->entsize();
     9         kx 
     9         kx   for (Input_objects::Relobj_iterator p = input_objects->relobj_begin();
     9         kx        p != input_objects->relobj_end();
     9         kx        ++p)
     9         kx     {
     9         kx       unsigned int count = (*p)->set_local_dynsym_offset(off);
     9         kx       off += count * dynsym->entsize();
     9         kx     }
     9         kx }
     9         kx 
     9         kx // Create the version sections.
     9         kx 
     9         kx void
     9         kx Layout::create_version_sections(const Versions* versions,
     9         kx 				const Symbol_table* symtab,
     9         kx 				unsigned int local_symcount,
     9         kx 				const std::vector<Symbol*>& dynamic_symbols,
     9         kx 				const Output_section* dynstr)
     9         kx {
     9         kx   if (!versions->any_defs() && !versions->any_needs())
     9         kx     return;
     9         kx 
     9         kx   switch (parameters->size_and_endianness())
     9         kx     {
     9         kx #ifdef HAVE_TARGET_32_LITTLE
     9         kx     case Parameters::TARGET_32_LITTLE:
     9         kx       this->sized_create_version_sections<32, false>(versions, symtab,
     9         kx 						     local_symcount,
     9         kx 						     dynamic_symbols, dynstr);
     9         kx       break;
     9         kx #endif
     9         kx #ifdef HAVE_TARGET_32_BIG
     9         kx     case Parameters::TARGET_32_BIG:
     9         kx       this->sized_create_version_sections<32, true>(versions, symtab,
     9         kx 						    local_symcount,
     9         kx 						    dynamic_symbols, dynstr);
     9         kx       break;
     9         kx #endif
     9         kx #ifdef HAVE_TARGET_64_LITTLE
     9         kx     case Parameters::TARGET_64_LITTLE:
     9         kx       this->sized_create_version_sections<64, false>(versions, symtab,
     9         kx 						     local_symcount,
     9         kx 						     dynamic_symbols, dynstr);
     9         kx       break;
     9         kx #endif
     9         kx #ifdef HAVE_TARGET_64_BIG
     9         kx     case Parameters::TARGET_64_BIG:
     9         kx       this->sized_create_version_sections<64, true>(versions, symtab,
     9         kx 						    local_symcount,
     9         kx 						    dynamic_symbols, dynstr);
     9         kx       break;
     9         kx #endif
     9         kx     default:
     9         kx       gold_unreachable();
     9         kx     }
     9         kx }
     9         kx 
     9         kx // Create the version sections, sized version.
     9         kx 
     9         kx template<int size, bool big_endian>
     9         kx void
     9         kx Layout::sized_create_version_sections(
     9         kx     const Versions* versions,
     9         kx     const Symbol_table* symtab,
     9         kx     unsigned int local_symcount,
     9         kx     const std::vector<Symbol*>& dynamic_symbols,
     9         kx     const Output_section* dynstr)
     9         kx {
     9         kx   Output_section* vsec = this->choose_output_section(NULL, ".gnu.version",
     9         kx 						     elfcpp::SHT_GNU_versym,
     9         kx 						     elfcpp::SHF_ALLOC,
     9         kx 						     false,
     9         kx 						     ORDER_DYNAMIC_LINKER,
     9         kx 						     false, false, false);
     9         kx 
     9         kx   // Check for NULL since a linker script may discard this section.
     9         kx   if (vsec != NULL)
     9         kx     {
     9         kx       unsigned char* vbuf;
     9         kx       unsigned int vsize;
     9         kx       versions->symbol_section_contents<size, big_endian>(symtab,
     9         kx 							  &this->dynpool_,
     9         kx 							  local_symcount,
     9         kx 							  dynamic_symbols,
     9         kx 							  &vbuf, &vsize);
     9         kx 
     9         kx       Output_section_data* vdata = new Output_data_const_buffer(vbuf, vsize, 2,
     9         kx 								"** versions");
     9         kx 
     9         kx       vsec->add_output_section_data(vdata);
     9         kx       vsec->set_entsize(2);
     9         kx       vsec->set_link_section(this->dynsym_section_);
     9         kx     }
     9         kx 
     9         kx   Output_data_dynamic* const odyn = this->dynamic_data_;
     9         kx   if (odyn != NULL && vsec != NULL)
     9         kx     odyn->add_section_address(elfcpp::DT_VERSYM, vsec);
     9         kx 
     9         kx   if (versions->any_defs())
     9         kx     {
     9         kx       Output_section* vdsec;
     9         kx       vdsec = this->choose_output_section(NULL, ".gnu.version_d",
     9         kx 					  elfcpp::SHT_GNU_verdef,
     9         kx 					  elfcpp::SHF_ALLOC,
     9         kx 					  false, ORDER_DYNAMIC_LINKER, false,
     9         kx 					  false, false);
     9         kx 
     9         kx       if (vdsec != NULL)
     9         kx 	{
     9         kx 	  unsigned char* vdbuf;
     9         kx 	  unsigned int vdsize;
     9         kx 	  unsigned int vdentries;
     9         kx 	  versions->def_section_contents<size, big_endian>(&this->dynpool_,
     9         kx 							   &vdbuf, &vdsize,
     9         kx 							   &vdentries);
     9         kx 
     9         kx 	  Output_section_data* vddata =
     9         kx 	    new Output_data_const_buffer(vdbuf, vdsize, 4, "** version defs");
     9         kx 
     9         kx 	  vdsec->add_output_section_data(vddata);
     9         kx 	  vdsec->set_link_section(dynstr);
     9         kx 	  vdsec->set_info(vdentries);
     9         kx 
     9         kx 	  if (odyn != NULL)
     9         kx 	    {
     9         kx 	      odyn->add_section_address(elfcpp::DT_VERDEF, vdsec);
     9         kx 	      odyn->add_constant(elfcpp::DT_VERDEFNUM, vdentries);
     9         kx 	    }
     9         kx 	}
     9         kx     }
     9         kx 
     9         kx   if (versions->any_needs())
     9         kx     {
     9         kx       Output_section* vnsec;
     9         kx       vnsec = this->choose_output_section(NULL, ".gnu.version_r",
     9         kx 					  elfcpp::SHT_GNU_verneed,
     9         kx 					  elfcpp::SHF_ALLOC,
     9         kx 					  false, ORDER_DYNAMIC_LINKER, false,
     9         kx 					  false, false);
     9         kx 
     9         kx       if (vnsec != NULL)
     9         kx 	{
     9         kx 	  unsigned char* vnbuf;
     9         kx 	  unsigned int vnsize;
     9         kx 	  unsigned int vnentries;
     9         kx 	  versions->need_section_contents<size, big_endian>(&this->dynpool_,
     9         kx 							    &vnbuf, &vnsize,
     9         kx 							    &vnentries);
     9         kx 
     9         kx 	  Output_section_data* vndata =
     9         kx 	    new Output_data_const_buffer(vnbuf, vnsize, 4, "** version refs");
     9         kx 
     9         kx 	  vnsec->add_output_section_data(vndata);
     9         kx 	  vnsec->set_link_section(dynstr);
     9         kx 	  vnsec->set_info(vnentries);
     9         kx 
     9         kx 	  if (odyn != NULL)
     9         kx 	    {
     9         kx 	      odyn->add_section_address(elfcpp::DT_VERNEED, vnsec);
     9         kx 	      odyn->add_constant(elfcpp::DT_VERNEEDNUM, vnentries);
     9         kx 	    }
     9         kx 	}
     9         kx     }
     9         kx }
     9         kx 
     9         kx // Create the .interp section and PT_INTERP segment.
     9         kx 
     9         kx void
     9         kx Layout::create_interp(const Target* target)
     9         kx {
     9         kx   gold_assert(this->interp_segment_ == NULL);
     9         kx 
     9         kx   const char* interp = parameters->options().dynamic_linker();
     9         kx   if (interp == NULL)
     9         kx     {
     9         kx       interp = target->dynamic_linker();
     9         kx       gold_assert(interp != NULL);
     9         kx     }
     9         kx 
     9         kx   size_t len = strlen(interp) + 1;
     9         kx 
     9         kx   Output_section_data* odata = new Output_data_const(interp, len, 1);
     9         kx 
     9         kx   Output_section* osec = this->choose_output_section(NULL, ".interp",
     9         kx 						     elfcpp::SHT_PROGBITS,
     9         kx 						     elfcpp::SHF_ALLOC,
     9         kx 						     false, ORDER_INTERP,
     9         kx 						     false, false, false);
     9         kx   if (osec != NULL)
     9         kx     osec->add_output_section_data(odata);
     9         kx }
     9         kx 
     9         kx // Add dynamic tags for the PLT and the dynamic relocs.  This is
     9         kx // called by the target-specific code.  This does nothing if not doing
     9         kx // a dynamic link.
     9         kx 
     9         kx // USE_REL is true for REL relocs rather than RELA relocs.
     9         kx 
     9         kx // If PLT_GOT is not NULL, then DT_PLTGOT points to it.
     9         kx 
     9         kx // If PLT_REL is not NULL, it is used for DT_PLTRELSZ, and DT_JMPREL,
     9         kx // and we also set DT_PLTREL.  We use PLT_REL's output section, since
     9         kx // some targets have multiple reloc sections in PLT_REL.
     9         kx 
     9         kx // If DYN_REL is not NULL, it is used for DT_REL/DT_RELA,
     9         kx // DT_RELSZ/DT_RELASZ, DT_RELENT/DT_RELAENT.  Again we use the output
     9         kx // section.
     9         kx 
     9         kx // If ADD_DEBUG is true, we add a DT_DEBUG entry when generating an
     9         kx // executable.
     9         kx 
     9         kx void
     9         kx Layout::add_target_dynamic_tags(bool use_rel, const Output_data* plt_got,
     9         kx 				const Output_data* plt_rel,
     9         kx 				const Output_data_reloc_generic* dyn_rel,
     9         kx 				bool add_debug, bool dynrel_includes_plt)
     9         kx {
     9         kx   Output_data_dynamic* odyn = this->dynamic_data_;
     9         kx   if (odyn == NULL)
     9         kx     return;
     9         kx 
     9         kx   if (plt_got != NULL && plt_got->output_section() != NULL)
     9         kx     odyn->add_section_address(elfcpp::DT_PLTGOT, plt_got);
     9         kx 
     9         kx   if (plt_rel != NULL && plt_rel->output_section() != NULL)
     9         kx     {
     9         kx       odyn->add_section_size(elfcpp::DT_PLTRELSZ, plt_rel->output_section());
     9         kx       odyn->add_section_address(elfcpp::DT_JMPREL, plt_rel->output_section());
     9         kx       odyn->add_constant(elfcpp::DT_PLTREL,
     9         kx 			 use_rel ? elfcpp::DT_REL : elfcpp::DT_RELA);
     9         kx     }
     9         kx 
     9         kx   if ((dyn_rel != NULL && dyn_rel->output_section() != NULL)
     9         kx       || (dynrel_includes_plt
     9         kx 	  && plt_rel != NULL
     9         kx 	  && plt_rel->output_section() != NULL))
     9         kx     {
     9         kx       bool have_dyn_rel = dyn_rel != NULL && dyn_rel->output_section() != NULL;
     9         kx       bool have_plt_rel = plt_rel != NULL && plt_rel->output_section() != NULL;
     9         kx       odyn->add_section_address(use_rel ? elfcpp::DT_REL : elfcpp::DT_RELA,
     9         kx 				(have_dyn_rel
     9         kx 				 ? dyn_rel->output_section()
     9         kx 				 : plt_rel->output_section()));
     9         kx       elfcpp::DT size_tag = use_rel ? elfcpp::DT_RELSZ : elfcpp::DT_RELASZ;
     9         kx       if (have_dyn_rel && have_plt_rel && dynrel_includes_plt)
     9         kx 	odyn->add_section_size(size_tag,
     9         kx 			       dyn_rel->output_section(),
     9         kx 			       plt_rel->output_section());
     9         kx       else if (have_dyn_rel)
     9         kx 	odyn->add_section_size(size_tag, dyn_rel->output_section());
     9         kx       else
     9         kx 	odyn->add_section_size(size_tag, plt_rel->output_section());
     9         kx       const int size = parameters->target().get_size();
     9         kx       elfcpp::DT rel_tag;
     9         kx       int rel_size;
     9         kx       if (use_rel)
     9         kx 	{
     9         kx 	  rel_tag = elfcpp::DT_RELENT;
     9         kx 	  if (size == 32)
     9         kx 	    rel_size = Reloc_types<elfcpp::SHT_REL, 32, false>::reloc_size;
     9         kx 	  else if (size == 64)
     9         kx 	    rel_size = Reloc_types<elfcpp::SHT_REL, 64, false>::reloc_size;
     9         kx 	  else
     9         kx 	    gold_unreachable();
     9         kx 	}
     9         kx       else
     9         kx 	{
     9         kx 	  rel_tag = elfcpp::DT_RELAENT;
     9         kx 	  if (size == 32)
     9         kx 	    rel_size = Reloc_types<elfcpp::SHT_RELA, 32, false>::reloc_size;
     9         kx 	  else if (size == 64)
     9         kx 	    rel_size = Reloc_types<elfcpp::SHT_RELA, 64, false>::reloc_size;
     9         kx 	  else
     9         kx 	    gold_unreachable();
     9         kx 	}
     9         kx       odyn->add_constant(rel_tag, rel_size);
     9         kx 
     9         kx       if (parameters->options().combreloc() && have_dyn_rel)
     9         kx 	{
     9         kx 	  size_t c = dyn_rel->relative_reloc_count();
     9         kx 	  if (c > 0)
     9         kx 	    odyn->add_constant((use_rel
     9         kx 				? elfcpp::DT_RELCOUNT
     9         kx 				: elfcpp::DT_RELACOUNT),
     9         kx 			       c);
     9         kx 	}
     9         kx     }
     9         kx 
     9         kx   if (add_debug && !parameters->options().shared())
     9         kx     {
     9         kx       // The value of the DT_DEBUG tag is filled in by the dynamic
     9         kx       // linker at run time, and used by the debugger.
     9         kx       odyn->add_constant(elfcpp::DT_DEBUG, 0);
     9         kx     }
     9         kx }
     9         kx 
     9         kx void
     9         kx Layout::add_target_specific_dynamic_tag(elfcpp::DT tag, unsigned int val)
     9         kx {
     9         kx   Output_data_dynamic* odyn = this->dynamic_data_;
     9         kx   if (odyn == NULL)
     9         kx     return;
     9         kx   odyn->add_constant(tag, val);
     9         kx }
     9         kx 
     9         kx // Finish the .dynamic section and PT_DYNAMIC segment.
     9         kx 
     9         kx void
     9         kx Layout::finish_dynamic_section(const Input_objects* input_objects,
     9         kx 			       const Symbol_table* symtab)
     9         kx {
     9         kx   if (!this->script_options_->saw_phdrs_clause()
     9         kx       && this->dynamic_section_ != NULL)
     9         kx     {
     9         kx       Output_segment* oseg = this->make_output_segment(elfcpp::PT_DYNAMIC,
     9         kx 						       (elfcpp::PF_R
     9         kx 							| elfcpp::PF_W));
     9         kx       oseg->add_output_section_to_nonload(this->dynamic_section_,
     9         kx 					  elfcpp::PF_R | elfcpp::PF_W);
     9         kx     }
     9         kx 
     9         kx   Output_data_dynamic* const odyn = this->dynamic_data_;
     9         kx   if (odyn == NULL)
     9         kx     return;
     9         kx 
     9         kx   for (Input_objects::Dynobj_iterator p = input_objects->dynobj_begin();
     9         kx        p != input_objects->dynobj_end();
     9         kx        ++p)
     9         kx     {
     9         kx       if (!(*p)->is_needed() && (*p)->as_needed())
     9         kx 	{
     9         kx 	  // This dynamic object was linked with --as-needed, but it
     9         kx 	  // is not needed.
     9         kx 	  continue;
     9         kx 	}
     9         kx 
     9         kx       odyn->add_string(elfcpp::DT_NEEDED, (*p)->soname());
     9         kx     }
     9         kx 
     9         kx   if (parameters->options().shared())
     9         kx     {
     9         kx       const char* soname = parameters->options().soname();
     9         kx       if (soname != NULL)
     9         kx 	odyn->add_string(elfcpp::DT_SONAME, soname);
     9         kx     }
     9         kx 
     9         kx   Symbol* sym = symtab->lookup(parameters->options().init());
     9         kx   if (sym != NULL && sym->is_defined() && !sym->is_from_dynobj())
     9         kx     odyn->add_symbol(elfcpp::DT_INIT, sym);
     9         kx 
     9         kx   sym = symtab->lookup(parameters->options().fini());
     9         kx   if (sym != NULL && sym->is_defined() && !sym->is_from_dynobj())
     9         kx     odyn->add_symbol(elfcpp::DT_FINI, sym);
     9         kx 
     9         kx   // Look for .init_array, .preinit_array and .fini_array by checking
     9         kx   // section types.
     9         kx   for(Layout::Section_list::const_iterator p = this->section_list_.begin();
     9         kx       p != this->section_list_.end();
     9         kx       ++p)
     9         kx     switch((*p)->type())
     9         kx       {
     9         kx       case elfcpp::SHT_FINI_ARRAY:
     9         kx 	odyn->add_section_address(elfcpp::DT_FINI_ARRAY, *p);
     9         kx 	odyn->add_section_size(elfcpp::DT_FINI_ARRAYSZ, *p);
     9         kx 	break;
     9         kx       case elfcpp::SHT_INIT_ARRAY:
     9         kx 	odyn->add_section_address(elfcpp::DT_INIT_ARRAY, *p);
     9         kx 	odyn->add_section_size(elfcpp::DT_INIT_ARRAYSZ, *p);
     9         kx 	break;
     9         kx       case elfcpp::SHT_PREINIT_ARRAY:
     9         kx 	odyn->add_section_address(elfcpp::DT_PREINIT_ARRAY, *p);
     9         kx 	odyn->add_section_size(elfcpp::DT_PREINIT_ARRAYSZ, *p);
     9         kx 	break;
     9         kx       default:
     9         kx 	break;
     9         kx       }
     9         kx 
     9         kx   // Add a DT_RPATH entry if needed.
     9         kx   const General_options::Dir_list& rpath(parameters->options().rpath());
     9         kx   if (!rpath.empty())
     9         kx     {
     9         kx       std::string rpath_val;
     9         kx       for (General_options::Dir_list::const_iterator p = rpath.begin();
     9         kx 	   p != rpath.end();
     9         kx 	   ++p)
     9         kx 	{
     9         kx 	  if (rpath_val.empty())
     9         kx 	    rpath_val = p->name();
     9         kx 	  else
     9         kx 	    {
     9         kx 	      // Eliminate duplicates.
     9         kx 	      General_options::Dir_list::const_iterator q;
     9         kx 	      for (q = rpath.begin(); q != p; ++q)
     9         kx 		if (q->name() == p->name())
     9         kx 		  break;
     9         kx 	      if (q == p)
     9         kx 		{
     9         kx 		  rpath_val += ':';
     9         kx 		  rpath_val += p->name();
     9         kx 		}
     9         kx 	    }
     9         kx 	}
     9         kx 
     9         kx       if (!parameters->options().enable_new_dtags())
     9         kx 	odyn->add_string(elfcpp::DT_RPATH, rpath_val);
     9         kx       else
     9         kx 	odyn->add_string(elfcpp::DT_RUNPATH, rpath_val);
     9         kx     }
     9         kx 
     9         kx   // Look for text segments that have dynamic relocations.
     9         kx   bool have_textrel = false;
     9         kx   if (!this->script_options_->saw_sections_clause())
     9         kx     {
     9         kx       for (Segment_list::const_iterator p = this->segment_list_.begin();
     9         kx 	   p != this->segment_list_.end();
     9         kx 	   ++p)
     9         kx 	{
     9         kx 	  if ((*p)->type() == elfcpp::PT_LOAD
     9         kx 	      && ((*p)->flags() & elfcpp::PF_W) == 0
     9         kx 	      && (*p)->has_dynamic_reloc())
     9         kx 	    {
     9         kx 	      have_textrel = true;
     9         kx 	      break;
     9         kx 	    }
     9         kx 	}
     9         kx     }
     9         kx   else
     9         kx     {
     9         kx       // We don't know the section -> segment mapping, so we are
     9         kx       // conservative and just look for readonly sections with
     9         kx       // relocations.  If those sections wind up in writable segments,
     9         kx       // then we have created an unnecessary DT_TEXTREL entry.
     9         kx       for (Section_list::const_iterator p = this->section_list_.begin();
     9         kx 	   p != this->section_list_.end();
     9         kx 	   ++p)
     9         kx 	{
     9         kx 	  if (((*p)->flags() & elfcpp::SHF_ALLOC) != 0
     9         kx 	      && ((*p)->flags() & elfcpp::SHF_WRITE) == 0
     9         kx 	      && (*p)->has_dynamic_reloc())
     9         kx 	    {
     9         kx 	      have_textrel = true;
     9         kx 	      break;
     9         kx 	    }
     9         kx 	}
     9         kx     }
     9         kx 
     9         kx   if (parameters->options().filter() != NULL)
     9         kx     odyn->add_string(elfcpp::DT_FILTER, parameters->options().filter());
     9         kx   if (parameters->options().any_auxiliary())
     9         kx     {
     9         kx       for (options::String_set::const_iterator p =
     9         kx 	     parameters->options().auxiliary_begin();
     9         kx 	   p != parameters->options().auxiliary_end();
     9         kx 	   ++p)
     9         kx 	odyn->add_string(elfcpp::DT_AUXILIARY, *p);
     9         kx     }
     9         kx 
     9         kx   // Add a DT_FLAGS entry if necessary.
     9         kx   unsigned int flags = 0;
     9         kx   if (have_textrel)
     9         kx     {
     9         kx       // Add a DT_TEXTREL for compatibility with older loaders.
     9         kx       odyn->add_constant(elfcpp::DT_TEXTREL, 0);
     9         kx       flags |= elfcpp::DF_TEXTREL;
     9         kx 
     9         kx       if (parameters->options().text())
     9         kx 	gold_error(_("read-only segment has dynamic relocations"));
     9         kx       else if (parameters->options().warn_shared_textrel()
     9         kx 	       && parameters->options().shared())
     9         kx 	gold_warning(_("shared library text segment is not shareable"));
     9         kx     }
     9         kx   if (parameters->options().shared() && this->has_static_tls())
     9         kx     flags |= elfcpp::DF_STATIC_TLS;
     9         kx   if (parameters->options().origin())
     9         kx     flags |= elfcpp::DF_ORIGIN;
     9         kx   if (parameters->options().Bsymbolic()
     9         kx       && !parameters->options().have_dynamic_list())
     9         kx     {
     9         kx       flags |= elfcpp::DF_SYMBOLIC;
     9         kx       // Add DT_SYMBOLIC for compatibility with older loaders.
     9         kx       odyn->add_constant(elfcpp::DT_SYMBOLIC, 0);
     9         kx     }
     9         kx   if (parameters->options().now())
     9         kx     flags |= elfcpp::DF_BIND_NOW;
     9         kx   if (flags != 0)
     9         kx     odyn->add_constant(elfcpp::DT_FLAGS, flags);
     9         kx 
     9         kx   flags = 0;
     9         kx   if (parameters->options().global())
     9         kx     flags |= elfcpp::DF_1_GLOBAL;
     9         kx   if (parameters->options().initfirst())
     9         kx     flags |= elfcpp::DF_1_INITFIRST;
     9         kx   if (parameters->options().interpose())
     9         kx     flags |= elfcpp::DF_1_INTERPOSE;
     9         kx   if (parameters->options().loadfltr())
     9         kx     flags |= elfcpp::DF_1_LOADFLTR;
     9         kx   if (parameters->options().nodefaultlib())
     9         kx     flags |= elfcpp::DF_1_NODEFLIB;
     9         kx   if (parameters->options().nodelete())
     9         kx     flags |= elfcpp::DF_1_NODELETE;
     9         kx   if (parameters->options().nodlopen())
     9         kx     flags |= elfcpp::DF_1_NOOPEN;
     9         kx   if (parameters->options().nodump())
     9         kx     flags |= elfcpp::DF_1_NODUMP;
     9         kx   if (!parameters->options().shared())
     9         kx     flags &= ~(elfcpp::DF_1_INITFIRST
     9         kx 	       | elfcpp::DF_1_NODELETE
     9         kx 	       | elfcpp::DF_1_NOOPEN);
     9         kx   if (parameters->options().origin())
     9         kx     flags |= elfcpp::DF_1_ORIGIN;
     9         kx   if (parameters->options().now())
     9         kx     flags |= elfcpp::DF_1_NOW;
     9         kx   if (parameters->options().Bgroup())
     9         kx     flags |= elfcpp::DF_1_GROUP;
     9         kx   if (parameters->options().pie())
     9         kx     flags |= elfcpp::DF_1_PIE;
     9         kx   if (flags != 0)
     9         kx     odyn->add_constant(elfcpp::DT_FLAGS_1, flags);
     9         kx 
     9         kx   flags = 0;
     9         kx   if (parameters->options().unique())
     9         kx     flags |= elfcpp::DF_GNU_1_UNIQUE;
     9         kx   if (flags != 0)
     9         kx     odyn->add_constant(elfcpp::DT_GNU_FLAGS_1, flags);
     9         kx }
     9         kx 
     9         kx // Set the size of the _DYNAMIC symbol table to be the size of the
     9         kx // dynamic data.
     9         kx 
     9         kx void
     9         kx Layout::set_dynamic_symbol_size(const Symbol_table* symtab)
     9         kx {
     9         kx   Output_data_dynamic* const odyn = this->dynamic_data_;
     9         kx   if (odyn == NULL)
     9         kx     return;
     9         kx   odyn->finalize_data_size();
     9         kx   if (this->dynamic_symbol_ == NULL)
     9         kx     return;
     9         kx   off_t data_size = odyn->data_size();
     9         kx   const int size = parameters->target().get_size();
     9         kx   if (size == 32)
     9         kx     symtab->get_sized_symbol<32>(this->dynamic_symbol_)->set_symsize(data_size);
     9         kx   else if (size == 64)
     9         kx     symtab->get_sized_symbol<64>(this->dynamic_symbol_)->set_symsize(data_size);
     9         kx   else
     9         kx     gold_unreachable();
     9         kx }
     9         kx 
     9         kx // The mapping of input section name prefixes to output section names.
     9         kx // In some cases one prefix is itself a prefix of another prefix; in
     9         kx // such a case the longer prefix must come first.  These prefixes are
     9         kx // based on the GNU linker default ELF linker script.
     9         kx 
     9         kx #define MAPPING_INIT(f, t) { f, sizeof(f) - 1, t, sizeof(t) - 1 }
     9         kx #define MAPPING_INIT_EXACT(f, t) { f, 0, t, sizeof(t) - 1 }
     9         kx const Layout::Section_name_mapping Layout::section_name_mapping[] =
     9         kx {
     9         kx   MAPPING_INIT(".text.", ".text"),
     9         kx   MAPPING_INIT(".rodata.", ".rodata"),
     9         kx   MAPPING_INIT(".data.rel.ro.local.", ".data.rel.ro.local"),
     9         kx   MAPPING_INIT_EXACT(".data.rel.ro.local", ".data.rel.ro.local"),
     9         kx   MAPPING_INIT(".data.rel.ro.", ".data.rel.ro"),
     9         kx   MAPPING_INIT_EXACT(".data.rel.ro", ".data.rel.ro"),
     9         kx   MAPPING_INIT(".data.", ".data"),
     9         kx   MAPPING_INIT(".bss.", ".bss"),
     9         kx   MAPPING_INIT(".tdata.", ".tdata"),
     9         kx   MAPPING_INIT(".tbss.", ".tbss"),
     9         kx   MAPPING_INIT(".init_array.", ".init_array"),
     9         kx   MAPPING_INIT(".fini_array.", ".fini_array"),
     9         kx   MAPPING_INIT(".sdata.", ".sdata"),
     9         kx   MAPPING_INIT(".sbss.", ".sbss"),
     9         kx   // FIXME: In the GNU linker, .sbss2 and .sdata2 are handled
     9         kx   // differently depending on whether it is creating a shared library.
     9         kx   MAPPING_INIT(".sdata2.", ".sdata"),
     9         kx   MAPPING_INIT(".sbss2.", ".sbss"),
     9         kx   MAPPING_INIT(".lrodata.", ".lrodata"),
     9         kx   MAPPING_INIT(".ldata.", ".ldata"),
     9         kx   MAPPING_INIT(".lbss.", ".lbss"),
     9         kx   MAPPING_INIT(".gcc_except_table.", ".gcc_except_table"),
     9         kx   MAPPING_INIT(".gnu.linkonce.d.rel.ro.local.", ".data.rel.ro.local"),
     9         kx   MAPPING_INIT(".gnu.linkonce.d.rel.ro.", ".data.rel.ro"),
     9         kx   MAPPING_INIT(".gnu.linkonce.t.", ".text"),
     9         kx   MAPPING_INIT(".gnu.linkonce.r.", ".rodata"),
     9         kx   MAPPING_INIT(".gnu.linkonce.d.", ".data"),
     9         kx   MAPPING_INIT(".gnu.linkonce.b.", ".bss"),
     9         kx   MAPPING_INIT(".gnu.linkonce.s.", ".sdata"),
     9         kx   MAPPING_INIT(".gnu.linkonce.sb.", ".sbss"),
     9         kx   MAPPING_INIT(".gnu.linkonce.s2.", ".sdata"),
     9         kx   MAPPING_INIT(".gnu.linkonce.sb2.", ".sbss"),
     9         kx   MAPPING_INIT(".gnu.linkonce.wi.", ".debug_info"),
     9         kx   MAPPING_INIT(".gnu.linkonce.td.", ".tdata"),
     9         kx   MAPPING_INIT(".gnu.linkonce.tb.", ".tbss"),
     9         kx   MAPPING_INIT(".gnu.linkonce.lr.", ".lrodata"),
     9         kx   MAPPING_INIT(".gnu.linkonce.l.", ".ldata"),
     9         kx   MAPPING_INIT(".gnu.linkonce.lb.", ".lbss"),
     9         kx   MAPPING_INIT(".ARM.extab", ".ARM.extab"),
     9         kx   MAPPING_INIT(".gnu.linkonce.armextab.", ".ARM.extab"),
     9         kx   MAPPING_INIT(".ARM.exidx", ".ARM.exidx"),
     9         kx   MAPPING_INIT(".gnu.linkonce.armexidx.", ".ARM.exidx"),
     9         kx   MAPPING_INIT(".gnu.build.attributes.", ".gnu.build.attributes"),
     9         kx };
     9         kx 
     9         kx // Mapping for ".text" section prefixes with -z,keep-text-section-prefix.
     9         kx const Layout::Section_name_mapping Layout::text_section_name_mapping[] =
     9         kx {
     9         kx   MAPPING_INIT(".text.hot.", ".text.hot"),
     9         kx   MAPPING_INIT_EXACT(".text.hot", ".text.hot"),
     9         kx   MAPPING_INIT(".text.unlikely.", ".text.unlikely"),
     9         kx   MAPPING_INIT_EXACT(".text.unlikely", ".text.unlikely"),
     9         kx   MAPPING_INIT(".text.startup.", ".text.startup"),
     9         kx   MAPPING_INIT_EXACT(".text.startup", ".text.startup"),
     9         kx   MAPPING_INIT(".text.exit.", ".text.exit"),
     9         kx   MAPPING_INIT_EXACT(".text.exit", ".text.exit"),
     9         kx   MAPPING_INIT(".text.", ".text"),
     9         kx };
     9         kx #undef MAPPING_INIT
     9         kx #undef MAPPING_INIT_EXACT
     9         kx 
     9         kx const int Layout::section_name_mapping_count =
     9         kx   (sizeof(Layout::section_name_mapping)
     9         kx    / sizeof(Layout::section_name_mapping[0]));
     9         kx 
     9         kx const int Layout::text_section_name_mapping_count =
     9         kx   (sizeof(Layout::text_section_name_mapping)
     9         kx    / sizeof(Layout::text_section_name_mapping[0]));
     9         kx 
     9         kx // Find section name NAME in PSNM and return the mapped name if found
     9         kx // with the length set in PLEN.
     9         kx const char *
     9         kx Layout::match_section_name(const Layout::Section_name_mapping* psnm,
     9         kx 			   const int count,
     9         kx 			   const char* name, size_t* plen)
     9         kx {
     9         kx   for (int i = 0; i < count; ++i, ++psnm)
     9         kx     {
     9         kx       if (psnm->fromlen > 0)
     9         kx 	{
     9         kx 	  if (strncmp(name, psnm->from, psnm->fromlen) == 0)
     9         kx 	    {
     9         kx 	      *plen = psnm->tolen;
     9         kx 	      return psnm->to;
     9         kx 	    }
     9         kx 	}
     9         kx       else
     9         kx 	{
     9         kx 	  if (strcmp(name, psnm->from) == 0)
     9         kx 	    {
     9         kx 	      *plen = psnm->tolen;
     9         kx 	      return psnm->to;
     9         kx 	    }
     9         kx 	}
     9         kx     }
     9         kx   return NULL;
     9         kx }
     9         kx 
     9         kx // Choose the output section name to use given an input section name.
     9         kx // Set *PLEN to the length of the name.  *PLEN is initialized to the
     9         kx // length of NAME.
     9         kx 
     9         kx const char*
     9         kx Layout::output_section_name(const Relobj* relobj, const char* name,
     9         kx 			    size_t* plen)
     9         kx {
     9         kx   // gcc 4.3 generates the following sorts of section names when it
     9         kx   // needs a section name specific to a function:
     9         kx   //   .text.FN
     9         kx   //   .rodata.FN
     9         kx   //   .sdata2.FN
     9         kx   //   .data.FN
     9         kx   //   .data.rel.FN
     9         kx   //   .data.rel.local.FN
     9         kx   //   .data.rel.ro.FN
     9         kx   //   .data.rel.ro.local.FN
     9         kx   //   .sdata.FN
     9         kx   //   .bss.FN
     9         kx   //   .sbss.FN
     9         kx   //   .tdata.FN
     9         kx   //   .tbss.FN
     9         kx 
     9         kx   // The GNU linker maps all of those to the part before the .FN,
     9         kx   // except that .data.rel.local.FN is mapped to .data, and
     9         kx   // .data.rel.ro.local.FN is mapped to .data.rel.ro.  The sections
     9         kx   // beginning with .data.rel.ro.local are grouped together.
     9         kx 
     9         kx   // For an anonymous namespace, the string FN can contain a '.'.
     9         kx 
     9         kx   // Also of interest: .rodata.strN.N, .rodata.cstN, both of which the
     9         kx   // GNU linker maps to .rodata.
     9         kx 
     9         kx   // The .data.rel.ro sections are used with -z relro.  The sections
     9         kx   // are recognized by name.  We use the same names that the GNU
     9         kx   // linker does for these sections.
     9         kx 
     9         kx   // It is hard to handle this in a principled way, so we don't even
     9         kx   // try.  We use a table of mappings.  If the input section name is
     9         kx   // not found in the table, we simply use it as the output section
     9         kx   // name.
     9         kx 
     9         kx   if (parameters->options().keep_text_section_prefix()
     9         kx       && is_prefix_of(".text", name))
     9         kx     {
     9         kx       const char* match = match_section_name(text_section_name_mapping,
     9         kx 					     text_section_name_mapping_count,
     9         kx 					     name, plen);
     9         kx       if (match != NULL)
     9         kx 	return match;
     9         kx     }
     9         kx 
     9         kx   const char* match = match_section_name(section_name_mapping,
     9         kx 					 section_name_mapping_count, name, plen);
     9         kx   if (match != NULL)
     9         kx     return match;
     9         kx 
     9         kx   // As an additional complication, .ctors sections are output in
     9         kx   // either .ctors or .init_array sections, and .dtors sections are
     9         kx   // output in either .dtors or .fini_array sections.
     9         kx   if (is_prefix_of(".ctors.", name) || is_prefix_of(".dtors.", name))
     9         kx     {
     9         kx       if (parameters->options().ctors_in_init_array())
     9         kx 	{
     9         kx 	  *plen = 11;
     9         kx 	  return name[1] == 'c' ? ".init_array" : ".fini_array";
     9         kx 	}
     9         kx       else
     9         kx 	{
     9         kx 	  *plen = 6;
     9         kx 	  return name[1] == 'c' ? ".ctors" : ".dtors";
     9         kx 	}
     9         kx     }
     9         kx   if (parameters->options().ctors_in_init_array()
     9         kx       && (strcmp(name, ".ctors") == 0 || strcmp(name, ".dtors") == 0))
     9         kx     {
     9         kx       // To make .init_array/.fini_array work with gcc we must exclude
     9         kx       // .ctors and .dtors sections from the crtbegin and crtend
     9         kx       // files.
     9         kx       if (relobj == NULL
     9         kx 	  || (!Layout::match_file_name(relobj, "crtbegin")
     9         kx 	      && !Layout::match_file_name(relobj, "crtend")))
     9         kx 	{
     9         kx 	  *plen = 11;
     9         kx 	  return name[1] == 'c' ? ".init_array" : ".fini_array";
     9         kx 	}
     9         kx     }
     9         kx 
     9         kx   return name;
     9         kx }
     9         kx 
     9         kx // Return true if RELOBJ is an input file whose base name matches
     9         kx // FILE_NAME.  The base name must have an extension of ".o", and must
     9         kx // be exactly FILE_NAME.o or FILE_NAME, one character, ".o".  This is
     9         kx // to match crtbegin.o as well as crtbeginS.o without getting confused
     9         kx // by other possibilities.  Overall matching the file name this way is
     9         kx // a dreadful hack, but the GNU linker does it in order to better
     9         kx // support gcc, and we need to be compatible.
     9         kx 
     9         kx bool
     9         kx Layout::match_file_name(const Relobj* relobj, const char* match)
     9         kx {
     9         kx   const std::string& file_name(relobj->name());
     9         kx   const char* base_name = lbasename(file_name.c_str());
     9         kx   size_t match_len = strlen(match);
     9         kx   if (strncmp(base_name, match, match_len) != 0)
     9         kx     return false;
     9         kx   size_t base_len = strlen(base_name);
     9         kx   if (base_len != match_len + 2 && base_len != match_len + 3)
     9         kx     return false;
     9         kx   return memcmp(base_name + base_len - 2, ".o", 2) == 0;
     9         kx }
     9         kx 
     9         kx // Check if a comdat group or .gnu.linkonce section with the given
     9         kx // NAME is selected for the link.  If there is already a section,
     9         kx // *KEPT_SECTION is set to point to the existing section and the
     9         kx // function returns false.  Otherwise, OBJECT, SHNDX, IS_COMDAT, and
     9         kx // IS_GROUP_NAME are recorded for this NAME in the layout object,
     9         kx // *KEPT_SECTION is set to the internal copy and the function returns
     9         kx // true.
     9         kx 
     9         kx bool
     9         kx Layout::find_or_add_kept_section(const std::string& name,
     9         kx 				 Relobj* object,
     9         kx 				 unsigned int shndx,
     9         kx 				 bool is_comdat,
     9         kx 				 bool is_group_name,
     9         kx 				 Kept_section** kept_section)
     9         kx {
     9         kx   // It's normal to see a couple of entries here, for the x86 thunk
     9         kx   // sections.  If we see more than a few, we're linking a C++
     9         kx   // program, and we resize to get more space to minimize rehashing.
     9         kx   if (this->signatures_.size() > 4
     9         kx       && !this->resized_signatures_)
     9         kx     {
     9         kx       reserve_unordered_map(&this->signatures_,
     9         kx 			    this->number_of_input_files_ * 64);
     9         kx       this->resized_signatures_ = true;
     9         kx     }
     9         kx 
     9         kx   Kept_section candidate;
     9         kx   std::pair<Signatures::iterator, bool> ins =
     9         kx     this->signatures_.insert(std::make_pair(name, candidate));
     9         kx 
     9         kx   if (kept_section != NULL)
     9         kx     *kept_section = &ins.first->second;
     9         kx   if (ins.second)
     9         kx     {
     9         kx       // This is the first time we've seen this signature.
     9         kx       ins.first->second.set_object(object);
     9         kx       ins.first->second.set_shndx(shndx);
     9         kx       if (is_comdat)
     9         kx 	ins.first->second.set_is_comdat();
     9         kx       if (is_group_name)
     9         kx 	ins.first->second.set_is_group_name();
     9         kx       return true;
     9         kx     }
     9         kx 
     9         kx   // We have already seen this signature.
     9         kx 
     9         kx   if (ins.first->second.is_group_name())
     9         kx     {
     9         kx       // We've already seen a real section group with this signature.
     9         kx       // If the kept group is from a plugin object, and we're in the
     9         kx       // replacement phase, accept the new one as a replacement.
     9         kx       if (ins.first->second.object() == NULL
     9         kx 	  && parameters->options().plugins()->in_replacement_phase())
     9         kx 	{
     9         kx 	  ins.first->second.set_object(object);
     9         kx 	  ins.first->second.set_shndx(shndx);
     9         kx 	  return true;
     9         kx 	}
     9         kx       return false;
     9         kx     }
     9         kx   else if (is_group_name)
     9         kx     {
     9         kx       // This is a real section group, and we've already seen a
     9         kx       // linkonce section with this signature.  Record that we've seen
     9         kx       // a section group, and don't include this section group.
     9         kx       ins.first->second.set_is_group_name();
     9         kx       return false;
     9         kx     }
     9         kx   else
     9         kx     {
     9         kx       // We've already seen a linkonce section and this is a linkonce
     9         kx       // section.  These don't block each other--this may be the same
     9         kx       // symbol name with different section types.
     9         kx       return true;
     9         kx     }
     9         kx }
     9         kx 
     9         kx // Store the allocated sections into the section list.
     9         kx 
     9         kx void
     9         kx Layout::get_allocated_sections(Section_list* section_list) const
     9         kx {
     9         kx   for (Section_list::const_iterator p = this->section_list_.begin();
     9         kx        p != this->section_list_.end();
     9         kx        ++p)
     9         kx     if (((*p)->flags() & elfcpp::SHF_ALLOC) != 0)
     9         kx       section_list->push_back(*p);
     9         kx }
     9         kx 
     9         kx // Store the executable sections into the section list.
     9         kx 
     9         kx void
     9         kx Layout::get_executable_sections(Section_list* section_list) const
     9         kx {
     9         kx   for (Section_list::const_iterator p = this->section_list_.begin();
     9         kx        p != this->section_list_.end();
     9         kx        ++p)
     9         kx     if (((*p)->flags() & (elfcpp::SHF_ALLOC | elfcpp::SHF_EXECINSTR))
     9         kx 	== (elfcpp::SHF_ALLOC | elfcpp::SHF_EXECINSTR))
     9         kx       section_list->push_back(*p);
     9         kx }
     9         kx 
     9         kx // Create an output segment.
     9         kx 
     9         kx Output_segment*
     9         kx Layout::make_output_segment(elfcpp::Elf_Word type, elfcpp::Elf_Word flags)
     9         kx {
     9         kx   gold_assert(!parameters->options().relocatable());
     9         kx   Output_segment* oseg = new Output_segment(type, flags);
     9         kx   this->segment_list_.push_back(oseg);
     9         kx 
     9         kx   if (type == elfcpp::PT_TLS)
     9         kx     this->tls_segment_ = oseg;
     9         kx   else if (type == elfcpp::PT_GNU_RELRO)
     9         kx     this->relro_segment_ = oseg;
     9         kx   else if (type == elfcpp::PT_INTERP)
     9         kx     this->interp_segment_ = oseg;
     9         kx 
     9         kx   return oseg;
     9         kx }
     9         kx 
     9         kx // Return the file offset of the normal symbol table.
     9         kx 
     9         kx off_t
     9         kx Layout::symtab_section_offset() const
     9         kx {
     9         kx   if (this->symtab_section_ != NULL)
     9         kx     return this->symtab_section_->offset();
     9         kx   return 0;
     9         kx }
     9         kx 
     9         kx // Return the section index of the normal symbol table.  It may have
     9         kx // been stripped by the -s/--strip-all option.
     9         kx 
     9         kx unsigned int
     9         kx Layout::symtab_section_shndx() const
     9         kx {
     9         kx   if (this->symtab_section_ != NULL)
     9         kx     return this->symtab_section_->out_shndx();
     9         kx   return 0;
     9         kx }
     9         kx 
     9         kx // Write out the Output_sections.  Most won't have anything to write,
     9         kx // since most of the data will come from input sections which are
     9         kx // handled elsewhere.  But some Output_sections do have Output_data.
     9         kx 
     9         kx void
     9         kx Layout::write_output_sections(Output_file* of) const
     9         kx {
     9         kx   for (Section_list::const_iterator p = this->section_list_.begin();
     9         kx        p != this->section_list_.end();
     9         kx        ++p)
     9         kx     {
     9         kx       if (!(*p)->after_input_sections())
     9         kx 	(*p)->write(of);
     9         kx     }
     9         kx }
     9         kx 
     9         kx // Write out data not associated with a section or the symbol table.
     9         kx 
     9         kx void
     9         kx Layout::write_data(const Symbol_table* symtab, Output_file* of) const
     9         kx {
     9         kx   if (!parameters->options().strip_all())
     9         kx     {
     9         kx       const Output_section* symtab_section = this->symtab_section_;
     9         kx       for (Section_list::const_iterator p = this->section_list_.begin();
     9         kx 	   p != this->section_list_.end();
     9         kx 	   ++p)
     9         kx 	{
     9         kx 	  if ((*p)->needs_symtab_index())
     9         kx 	    {
     9         kx 	      gold_assert(symtab_section != NULL);
     9         kx 	      unsigned int index = (*p)->symtab_index();
     9         kx 	      gold_assert(index > 0 && index != -1U);
     9         kx 	      off_t off = (symtab_section->offset()
     9         kx 			   + index * symtab_section->entsize());
     9         kx 	      symtab->write_section_symbol(*p, this->symtab_xindex_, of, off);
     9         kx 	    }
     9         kx 	}
     9         kx     }
     9         kx 
     9         kx   const Output_section* dynsym_section = this->dynsym_section_;
     9         kx   for (Section_list::const_iterator p = this->section_list_.begin();
     9         kx        p != this->section_list_.end();
     9         kx        ++p)
     9         kx     {
     9         kx       if ((*p)->needs_dynsym_index())
     9         kx 	{
     9         kx 	  gold_assert(dynsym_section != NULL);
     9         kx 	  unsigned int index = (*p)->dynsym_index();
     9         kx 	  gold_assert(index > 0 && index != -1U);
     9         kx 	  off_t off = (dynsym_section->offset()
     9         kx 		       + index * dynsym_section->entsize());
     9         kx 	  symtab->write_section_symbol(*p, this->dynsym_xindex_, of, off);
     9         kx 	}
     9         kx     }
     9         kx 
     9         kx   // Write out the Output_data which are not in an Output_section.
     9         kx   for (Data_list::const_iterator p = this->special_output_list_.begin();
     9         kx        p != this->special_output_list_.end();
     9         kx        ++p)
     9         kx     (*p)->write(of);
     9         kx 
     9         kx   // Write out the Output_data which are not in an Output_section
     9         kx   // and are regenerated in each iteration of relaxation.
     9         kx   for (Data_list::const_iterator p = this->relax_output_list_.begin();
     9         kx        p != this->relax_output_list_.end();
     9         kx        ++p)
     9         kx     (*p)->write(of);
     9         kx }
     9         kx 
     9         kx // Write out the Output_sections which can only be written after the
     9         kx // input sections are complete.
     9         kx 
     9         kx void
     9         kx Layout::write_sections_after_input_sections(Output_file* of)
     9         kx {
     9         kx   // Determine the final section offsets, and thus the final output
     9         kx   // file size.  Note we finalize the .shstrab last, to allow the
     9         kx   // after_input_section sections to modify their section-names before
     9         kx   // writing.
     9         kx   if (this->any_postprocessing_sections_)
     9         kx     {
     9         kx       off_t off = this->output_file_size_;
     9         kx       off = this->set_section_offsets(off, POSTPROCESSING_SECTIONS_PASS);
     9         kx 
     9         kx       // Now that we've finalized the names, we can finalize the shstrab.
     9         kx       off =
     9         kx 	this->set_section_offsets(off,
     9         kx 				  STRTAB_AFTER_POSTPROCESSING_SECTIONS_PASS);
     9         kx 
     9         kx       if (off > this->output_file_size_)
     9         kx 	{
     9         kx 	  of->resize(off);
     9         kx 	  this->output_file_size_ = off;
     9         kx 	}
     9         kx     }
     9         kx 
     9         kx   for (Section_list::const_iterator p = this->section_list_.begin();
     9         kx        p != this->section_list_.end();
     9         kx        ++p)
     9         kx     {
     9         kx       if ((*p)->after_input_sections())
     9         kx 	(*p)->write(of);
     9         kx     }
     9         kx 
     9         kx   this->section_headers_->write(of);
     9         kx }
     9         kx 
     9         kx // If a tree-style build ID was requested, the parallel part of that computation
     9         kx // is already done, and the final hash-of-hashes is computed here.  For other
     9         kx // types of build IDs, all the work is done here.
     9         kx 
     9         kx void
     9         kx Layout::write_build_id(Output_file* of, unsigned char* array_of_hashes,
     9         kx 		       size_t size_of_hashes) const
     9         kx {
     9         kx   if (this->build_id_note_ == NULL)
     9         kx     return;
     9         kx 
     9         kx   unsigned char* ov = of->get_output_view(this->build_id_note_->offset(),
     9         kx 					  this->build_id_note_->data_size());
     9         kx 
     9         kx   if (array_of_hashes == NULL)
     9         kx     {
     9         kx       const size_t output_file_size = this->output_file_size();
     9         kx       const unsigned char* iv = of->get_input_view(0, output_file_size);
     9         kx       const char* style = parameters->options().build_id();
     9         kx 
     9         kx       // If we get here with style == "tree" then the output must be
     9         kx       // too small for chunking, and we use SHA-1 in that case.
     9         kx       if ((strcmp(style, "sha1") == 0) || (strcmp(style, "tree") == 0))
     9         kx 	sha1_buffer(reinterpret_cast<const char*>(iv), output_file_size, ov);
     9         kx       else if (strcmp(style, "md5") == 0)
     9         kx 	md5_buffer(reinterpret_cast<const char*>(iv), output_file_size, ov);
     9         kx       else
     9         kx 	gold_unreachable();
     9         kx 
     9         kx       of->free_input_view(0, output_file_size, iv);
     9         kx     }
     9         kx   else
     9         kx     {
     9         kx       // Non-overlapping substrings of the output file have been hashed.
     9         kx       // Compute SHA-1 hash of the hashes.
     9         kx       sha1_buffer(reinterpret_cast<const char*>(array_of_hashes),
     9         kx 		  size_of_hashes, ov);
     9         kx       delete[] array_of_hashes;
     9         kx     }
     9         kx 
     9         kx   of->write_output_view(this->build_id_note_->offset(),
     9         kx 			this->build_id_note_->data_size(),
     9         kx 			ov);
     9         kx }
     9         kx 
     9         kx // Write out a binary file.  This is called after the link is
     9         kx // complete.  IN is the temporary output file we used to generate the
     9         kx // ELF code.  We simply walk through the segments, read them from
     9         kx // their file offset in IN, and write them to their load address in
     9         kx // the output file.  FIXME: with a bit more work, we could support
     9         kx // S-records and/or Intel hex format here.
     9         kx 
     9         kx void
     9         kx Layout::write_binary(Output_file* in) const
     9         kx {
     9         kx   gold_assert(parameters->options().oformat_enum()
     9         kx 	      == General_options::OBJECT_FORMAT_BINARY);
     9         kx 
     9         kx   // Get the size of the binary file.
     9         kx   uint64_t max_load_address = 0;
     9         kx   for (Segment_list::const_iterator p = this->segment_list_.begin();
     9         kx        p != this->segment_list_.end();
     9         kx        ++p)
     9         kx     {
     9         kx       if ((*p)->type() == elfcpp::PT_LOAD && (*p)->filesz() > 0)
     9         kx 	{
     9         kx 	  uint64_t max_paddr = (*p)->paddr() + (*p)->filesz();
     9         kx 	  if (max_paddr > max_load_address)
     9         kx 	    max_load_address = max_paddr;
     9         kx 	}
     9         kx     }
     9         kx 
     9         kx   Output_file out(parameters->options().output_file_name());
     9         kx   out.open(max_load_address);
     9         kx 
     9         kx   for (Segment_list::const_iterator p = this->segment_list_.begin();
     9         kx        p != this->segment_list_.end();
     9         kx        ++p)
     9         kx     {
     9         kx       if ((*p)->type() == elfcpp::PT_LOAD && (*p)->filesz() > 0)
     9         kx 	{
     9         kx 	  const unsigned char* vin = in->get_input_view((*p)->offset(),
     9         kx 							(*p)->filesz());
     9         kx 	  unsigned char* vout = out.get_output_view((*p)->paddr(),
     9         kx 						    (*p)->filesz());
     9         kx 	  memcpy(vout, vin, (*p)->filesz());
     9         kx 	  out.write_output_view((*p)->paddr(), (*p)->filesz(), vout);
     9         kx 	  in->free_input_view((*p)->offset(), (*p)->filesz(), vin);
     9         kx 	}
     9         kx     }
     9         kx 
     9         kx   out.close();
     9         kx }
     9         kx 
     9         kx // Print the output sections to the map file.
     9         kx 
     9         kx void
     9         kx Layout::print_to_mapfile(Mapfile* mapfile) const
     9         kx {
     9         kx   for (Segment_list::const_iterator p = this->segment_list_.begin();
     9         kx        p != this->segment_list_.end();
     9         kx        ++p)
     9         kx     (*p)->print_sections_to_mapfile(mapfile);
     9         kx   for (Section_list::const_iterator p = this->unattached_section_list_.begin();
     9         kx        p != this->unattached_section_list_.end();
     9         kx        ++p)
     9         kx     (*p)->print_to_mapfile(mapfile);
     9         kx }
     9         kx 
     9         kx // Print statistical information to stderr.  This is used for --stats.
     9         kx 
     9         kx void
     9         kx Layout::print_stats() const
     9         kx {
     9         kx   this->namepool_.print_stats("section name pool");
     9         kx   this->sympool_.print_stats("output symbol name pool");
     9         kx   this->dynpool_.print_stats("dynamic name pool");
     9         kx 
     9         kx   for (Section_list::const_iterator p = this->section_list_.begin();
     9         kx        p != this->section_list_.end();
     9         kx        ++p)
     9         kx     (*p)->print_merge_stats();
     9         kx }
     9         kx 
     9         kx // Write_sections_task methods.
     9         kx 
     9         kx // We can always run this task.
     9         kx 
     9         kx Task_token*
     9         kx Write_sections_task::is_runnable()
     9         kx {
     9         kx   return NULL;
     9         kx }
     9         kx 
     9         kx // We need to unlock both OUTPUT_SECTIONS_BLOCKER and FINAL_BLOCKER
     9         kx // when finished.
     9         kx 
     9         kx void
     9         kx Write_sections_task::locks(Task_locker* tl)
     9         kx {
     9         kx   tl->add(this, this->output_sections_blocker_);
     9         kx   if (this->input_sections_blocker_ != NULL)
     9         kx     tl->add(this, this->input_sections_blocker_);
     9         kx   tl->add(this, this->final_blocker_);
     9         kx }
     9         kx 
     9         kx // Run the task--write out the data.
     9         kx 
     9         kx void
     9         kx Write_sections_task::run(Workqueue*)
     9         kx {
     9         kx   this->layout_->write_output_sections(this->of_);
     9         kx }
     9         kx 
     9         kx // Write_data_task methods.
     9         kx 
     9         kx // We can always run this task.
     9         kx 
     9         kx Task_token*
     9         kx Write_data_task::is_runnable()
     9         kx {
     9         kx   return NULL;
     9         kx }
     9         kx 
     9         kx // We need to unlock FINAL_BLOCKER when finished.
     9         kx 
     9         kx void
     9         kx Write_data_task::locks(Task_locker* tl)
     9         kx {
     9         kx   tl->add(this, this->final_blocker_);
     9         kx }
     9         kx 
     9         kx // Run the task--write out the data.
     9         kx 
     9         kx void
     9         kx Write_data_task::run(Workqueue*)
     9         kx {
     9         kx   this->layout_->write_data(this->symtab_, this->of_);
     9         kx }
     9         kx 
     9         kx // Write_symbols_task methods.
     9         kx 
     9         kx // We can always run this task.
     9         kx 
     9         kx Task_token*
     9         kx Write_symbols_task::is_runnable()
     9         kx {
     9         kx   return NULL;
     9         kx }
     9         kx 
     9         kx // We need to unlock FINAL_BLOCKER when finished.
     9         kx 
     9         kx void
     9         kx Write_symbols_task::locks(Task_locker* tl)
     9         kx {
     9         kx   tl->add(this, this->final_blocker_);
     9         kx }
     9         kx 
     9         kx // Run the task--write out the symbols.
     9         kx 
     9         kx void
     9         kx Write_symbols_task::run(Workqueue*)
     9         kx {
     9         kx   this->symtab_->write_globals(this->sympool_, this->dynpool_,
     9         kx 			       this->layout_->symtab_xindex(),
     9         kx 			       this->layout_->dynsym_xindex(), this->of_);
     9         kx }
     9         kx 
     9         kx // Write_after_input_sections_task methods.
     9         kx 
     9         kx // We can only run this task after the input sections have completed.
     9         kx 
     9         kx Task_token*
     9         kx Write_after_input_sections_task::is_runnable()
     9         kx {
     9         kx   if (this->input_sections_blocker_->is_blocked())
     9         kx     return this->input_sections_blocker_;
     9         kx   return NULL;
     9         kx }
     9         kx 
     9         kx // We need to unlock FINAL_BLOCKER when finished.
     9         kx 
     9         kx void
     9         kx Write_after_input_sections_task::locks(Task_locker* tl)
     9         kx {
     9         kx   tl->add(this, this->final_blocker_);
     9         kx }
     9         kx 
     9         kx // Run the task.
     9         kx 
     9         kx void
     9         kx Write_after_input_sections_task::run(Workqueue*)
     9         kx {
     9         kx   this->layout_->write_sections_after_input_sections(this->of_);
     9         kx }
     9         kx 
     9         kx // Build IDs can be computed as a "flat" sha1 or md5 of a string of bytes,
     9         kx // or as a "tree" where each chunk of the string is hashed and then those
     9         kx // hashes are put into a (much smaller) string which is hashed with sha1.
     9         kx // We compute a checksum over the entire file because that is simplest.
     9         kx 
     9         kx void
     9         kx Build_id_task_runner::run(Workqueue* workqueue, const Task*)
     9         kx {
     9         kx   Task_token* post_hash_tasks_blocker = new Task_token(true);
     9         kx   const Layout* layout = this->layout_;
     9         kx   Output_file* of = this->of_;
     9         kx   const size_t filesize = (layout->output_file_size() <= 0 ? 0
     9         kx 			   : static_cast<size_t>(layout->output_file_size()));
     9         kx   unsigned char* array_of_hashes = NULL;
     9         kx   size_t size_of_hashes = 0;
     9         kx 
     9         kx   if (strcmp(this->options_->build_id(), "tree") == 0
     9         kx       && this->options_->build_id_chunk_size_for_treehash() > 0
     9         kx       && filesize > 0
     9         kx       && (filesize >= this->options_->build_id_min_file_size_for_treehash()))
     9         kx     {
     9         kx       static const size_t MD5_OUTPUT_SIZE_IN_BYTES = 16;
     9         kx       const size_t chunk_size =
     9         kx 	  this->options_->build_id_chunk_size_for_treehash();
     9         kx       const size_t num_hashes = ((filesize - 1) / chunk_size) + 1;
     9         kx       post_hash_tasks_blocker->add_blockers(num_hashes);
     9         kx       size_of_hashes = num_hashes * MD5_OUTPUT_SIZE_IN_BYTES;
     9         kx       array_of_hashes = new unsigned char[size_of_hashes];
     9         kx       unsigned char *dst = array_of_hashes;
     9         kx       for (size_t i = 0, src_offset = 0; i < num_hashes;
     9         kx 	   i++, dst += MD5_OUTPUT_SIZE_IN_BYTES, src_offset += chunk_size)
     9         kx 	{
     9         kx 	  size_t size = std::min(chunk_size, filesize - src_offset);
     9         kx 	  workqueue->queue(new Hash_task(of,
     9         kx 					 src_offset,
     9         kx 					 size,
     9         kx 					 dst,
     9         kx 					 post_hash_tasks_blocker));
     9         kx 	}
     9         kx     }
     9         kx 
     9         kx   // Queue the final task to write the build id and close the output file.
     9         kx   workqueue->queue(new Task_function(new Close_task_runner(this->options_,
     9         kx 							   layout,
     9         kx 							   of,
     9         kx 							   array_of_hashes,
     9         kx 							   size_of_hashes),
     9         kx 				     post_hash_tasks_blocker,
     9         kx 				     "Task_function Close_task_runner"));
     9         kx }
     9         kx 
     9         kx // Close_task_runner methods.
     9         kx 
     9         kx // Finish up the build ID computation, if necessary, and write a binary file,
     9         kx // if necessary.  Then close the output file.
     9         kx 
     9         kx void
     9         kx Close_task_runner::run(Workqueue*, const Task*)
     9         kx {
     9         kx   // At this point the multi-threaded part of the build ID computation,
     9         kx   // if any, is done.  See Build_id_task_runner.
     9         kx   this->layout_->write_build_id(this->of_, this->array_of_hashes_,
     9         kx 				this->size_of_hashes_);
     9         kx 
     9         kx   // If we've been asked to create a binary file, we do so here.
     9         kx   if (this->options_->oformat_enum() != General_options::OBJECT_FORMAT_ELF)
     9         kx     this->layout_->write_binary(this->of_);
     9         kx 
     9         kx   if (this->options_->dependency_file())
     9         kx     File_read::write_dependency_file(this->options_->dependency_file(),
     9         kx 				     this->options_->output_file_name());
     9         kx 
     9         kx   this->of_->close();
     9         kx }
     9         kx 
     9         kx // Instantiate the templates we need.  We could use the configure
     9         kx // script to restrict this to only the ones for implemented targets.
     9         kx 
     9         kx #ifdef HAVE_TARGET_32_LITTLE
     9         kx template
     9         kx Output_section*
     9         kx Layout::init_fixed_output_section<32, false>(
     9         kx     const char* name,
     9         kx     elfcpp::Shdr<32, false>& shdr);
     9         kx #endif
     9         kx 
     9         kx #ifdef HAVE_TARGET_32_BIG
     9         kx template
     9         kx Output_section*
     9         kx Layout::init_fixed_output_section<32, true>(
     9         kx     const char* name,
     9         kx     elfcpp::Shdr<32, true>& shdr);
     9         kx #endif
     9         kx 
     9         kx #ifdef HAVE_TARGET_64_LITTLE
     9         kx template
     9         kx Output_section*
     9         kx Layout::init_fixed_output_section<64, false>(
     9         kx     const char* name,
     9         kx     elfcpp::Shdr<64, false>& shdr);
     9         kx #endif
     9         kx 
     9         kx #ifdef HAVE_TARGET_64_BIG
     9         kx template
     9         kx Output_section*
     9         kx Layout::init_fixed_output_section<64, true>(
     9         kx     const char* name,
     9         kx     elfcpp::Shdr<64, true>& shdr);
     9         kx #endif
     9         kx 
     9         kx #ifdef HAVE_TARGET_32_LITTLE
     9         kx template
     9         kx Output_section*
     9         kx Layout::layout<32, false>(Sized_relobj_file<32, false>* object,
     9         kx 			  unsigned int shndx,
     9         kx 			  const char* name,
     9         kx 			  const elfcpp::Shdr<32, false>& shdr,
     9         kx 			  unsigned int, unsigned int, unsigned int, off_t*);
     9         kx #endif
     9         kx 
     9         kx #ifdef HAVE_TARGET_32_BIG
     9         kx template
     9         kx Output_section*
     9         kx Layout::layout<32, true>(Sized_relobj_file<32, true>* object,
     9         kx 			 unsigned int shndx,
     9         kx 			 const char* name,
     9         kx 			 const elfcpp::Shdr<32, true>& shdr,
     9         kx 			 unsigned int, unsigned int, unsigned int, off_t*);
     9         kx #endif
     9         kx 
     9         kx #ifdef HAVE_TARGET_64_LITTLE
     9         kx template
     9         kx Output_section*
     9         kx Layout::layout<64, false>(Sized_relobj_file<64, false>* object,
     9         kx 			  unsigned int shndx,
     9         kx 			  const char* name,
     9         kx 			  const elfcpp::Shdr<64, false>& shdr,
     9         kx 			  unsigned int, unsigned int, unsigned int, off_t*);
     9         kx #endif
     9         kx 
     9         kx #ifdef HAVE_TARGET_64_BIG
     9         kx template
     9         kx Output_section*
     9         kx Layout::layout<64, true>(Sized_relobj_file<64, true>* object,
     9         kx 			 unsigned int shndx,
     9         kx 			 const char* name,
     9         kx 			 const elfcpp::Shdr<64, true>& shdr,
     9         kx 			 unsigned int, unsigned int, unsigned int, off_t*);
     9         kx #endif
     9         kx 
     9         kx #ifdef HAVE_TARGET_32_LITTLE
     9         kx template
     9         kx Output_section*
     9         kx Layout::layout_reloc<32, false>(Sized_relobj_file<32, false>* object,
     9         kx 				unsigned int reloc_shndx,
     9         kx 				const elfcpp::Shdr<32, false>& shdr,
     9         kx 				Output_section* data_section,
     9         kx 				Relocatable_relocs* rr);
     9         kx #endif
     9         kx 
     9         kx #ifdef HAVE_TARGET_32_BIG
     9         kx template
     9         kx Output_section*
     9         kx Layout::layout_reloc<32, true>(Sized_relobj_file<32, true>* object,
     9         kx 			       unsigned int reloc_shndx,
     9         kx 			       const elfcpp::Shdr<32, true>& shdr,
     9         kx 			       Output_section* data_section,
     9         kx 			       Relocatable_relocs* rr);
     9         kx #endif
     9         kx 
     9         kx #ifdef HAVE_TARGET_64_LITTLE
     9         kx template
     9         kx Output_section*
     9         kx Layout::layout_reloc<64, false>(Sized_relobj_file<64, false>* object,
     9         kx 				unsigned int reloc_shndx,
     9         kx 				const elfcpp::Shdr<64, false>& shdr,
     9         kx 				Output_section* data_section,
     9         kx 				Relocatable_relocs* rr);
     9         kx #endif
     9         kx 
     9         kx #ifdef HAVE_TARGET_64_BIG
     9         kx template
     9         kx Output_section*
     9         kx Layout::layout_reloc<64, true>(Sized_relobj_file<64, true>* object,
     9         kx 			       unsigned int reloc_shndx,
     9         kx 			       const elfcpp::Shdr<64, true>& shdr,
     9         kx 			       Output_section* data_section,
     9         kx 			       Relocatable_relocs* rr);
     9         kx #endif
     9         kx 
     9         kx #ifdef HAVE_TARGET_32_LITTLE
     9         kx template
     9         kx void
     9         kx Layout::layout_group<32, false>(Symbol_table* symtab,
     9         kx 				Sized_relobj_file<32, false>* object,
     9         kx 				unsigned int,
     9         kx 				const char* group_section_name,
     9         kx 				const char* signature,
     9         kx 				const elfcpp::Shdr<32, false>& shdr,
     9         kx 				elfcpp::Elf_Word flags,
     9         kx 				std::vector<unsigned int>* shndxes);
     9         kx #endif
     9         kx 
     9         kx #ifdef HAVE_TARGET_32_BIG
     9         kx template
     9         kx void
     9         kx Layout::layout_group<32, true>(Symbol_table* symtab,
     9         kx 			       Sized_relobj_file<32, true>* object,
     9         kx 			       unsigned int,
     9         kx 			       const char* group_section_name,
     9         kx 			       const char* signature,
     9         kx 			       const elfcpp::Shdr<32, true>& shdr,
     9         kx 			       elfcpp::Elf_Word flags,
     9         kx 			       std::vector<unsigned int>* shndxes);
     9         kx #endif
     9         kx 
     9         kx #ifdef HAVE_TARGET_64_LITTLE
     9         kx template
     9         kx void
     9         kx Layout::layout_group<64, false>(Symbol_table* symtab,
     9         kx 				Sized_relobj_file<64, false>* object,
     9         kx 				unsigned int,
     9         kx 				const char* group_section_name,
     9         kx 				const char* signature,
     9         kx 				const elfcpp::Shdr<64, false>& shdr,
     9         kx 				elfcpp::Elf_Word flags,
     9         kx 				std::vector<unsigned int>* shndxes);
     9         kx #endif
     9         kx 
     9         kx #ifdef HAVE_TARGET_64_BIG
     9         kx template
     9         kx void
     9         kx Layout::layout_group<64, true>(Symbol_table* symtab,
     9         kx 			       Sized_relobj_file<64, true>* object,
     9         kx 			       unsigned int,
     9         kx 			       const char* group_section_name,
     9         kx 			       const char* signature,
     9         kx 			       const elfcpp::Shdr<64, true>& shdr,
     9         kx 			       elfcpp::Elf_Word flags,
     9         kx 			       std::vector<unsigned int>* shndxes);
     9         kx #endif
     9         kx 
     9         kx #ifdef HAVE_TARGET_32_LITTLE
     9         kx template
     9         kx Output_section*
     9         kx Layout::layout_eh_frame<32, false>(Sized_relobj_file<32, false>* object,
     9         kx 				   const unsigned char* symbols,
     9         kx 				   off_t symbols_size,
     9         kx 				   const unsigned char* symbol_names,
     9         kx 				   off_t symbol_names_size,
     9         kx 				   unsigned int shndx,
     9         kx 				   const elfcpp::Shdr<32, false>& shdr,
     9         kx 				   unsigned int reloc_shndx,
     9         kx 				   unsigned int reloc_type,
     9         kx 				   off_t* off);
     9         kx #endif
     9         kx 
     9         kx #ifdef HAVE_TARGET_32_BIG
     9         kx template
     9         kx Output_section*
     9         kx Layout::layout_eh_frame<32, true>(Sized_relobj_file<32, true>* object,
     9         kx 				  const unsigned char* symbols,
     9         kx 				  off_t symbols_size,
     9         kx 				  const unsigned char* symbol_names,
     9         kx 				  off_t symbol_names_size,
     9         kx 				  unsigned int shndx,
     9         kx 				  const elfcpp::Shdr<32, true>& shdr,
     9         kx 				  unsigned int reloc_shndx,
     9         kx 				  unsigned int reloc_type,
     9         kx 				  off_t* off);
     9         kx #endif
     9         kx 
     9         kx #ifdef HAVE_TARGET_64_LITTLE
     9         kx template
     9         kx Output_section*
     9         kx Layout::layout_eh_frame<64, false>(Sized_relobj_file<64, false>* object,
     9         kx 				   const unsigned char* symbols,
     9         kx 				   off_t symbols_size,
     9         kx 				   const unsigned char* symbol_names,
     9         kx 				   off_t symbol_names_size,
     9         kx 				   unsigned int shndx,
     9         kx 				   const elfcpp::Shdr<64, false>& shdr,
     9         kx 				   unsigned int reloc_shndx,
     9         kx 				   unsigned int reloc_type,
     9         kx 				   off_t* off);
     9         kx #endif
     9         kx 
     9         kx #ifdef HAVE_TARGET_64_BIG
     9         kx template
     9         kx Output_section*
     9         kx Layout::layout_eh_frame<64, true>(Sized_relobj_file<64, true>* object,
     9         kx 				  const unsigned char* symbols,
     9         kx 				  off_t symbols_size,
     9         kx 				  const unsigned char* symbol_names,
     9         kx 				  off_t symbol_names_size,
     9         kx 				  unsigned int shndx,
     9         kx 				  const elfcpp::Shdr<64, true>& shdr,
     9         kx 				  unsigned int reloc_shndx,
     9         kx 				  unsigned int reloc_type,
     9         kx 				  off_t* off);
     9         kx #endif
     9         kx 
     9         kx #ifdef HAVE_TARGET_32_LITTLE
     9         kx template
     9         kx void
     9         kx Layout::add_to_gdb_index(bool is_type_unit,
     9         kx 			 Sized_relobj<32, false>* object,
     9         kx 			 const unsigned char* symbols,
     9         kx 			 off_t symbols_size,
     9         kx 			 unsigned int shndx,
     9         kx 			 unsigned int reloc_shndx,
     9         kx 			 unsigned int reloc_type);
     9         kx #endif
     9         kx 
     9         kx #ifdef HAVE_TARGET_32_BIG
     9         kx template
     9         kx void
     9         kx Layout::add_to_gdb_index(bool is_type_unit,
     9         kx 			 Sized_relobj<32, true>* object,
     9         kx 			 const unsigned char* symbols,
     9         kx 			 off_t symbols_size,
     9         kx 			 unsigned int shndx,
     9         kx 			 unsigned int reloc_shndx,
     9         kx 			 unsigned int reloc_type);
     9         kx #endif
     9         kx 
     9         kx #ifdef HAVE_TARGET_64_LITTLE
     9         kx template
     9         kx void
     9         kx Layout::add_to_gdb_index(bool is_type_unit,
     9         kx 			 Sized_relobj<64, false>* object,
     9         kx 			 const unsigned char* symbols,
     9         kx 			 off_t symbols_size,
     9         kx 			 unsigned int shndx,
     9         kx 			 unsigned int reloc_shndx,
     9         kx 			 unsigned int reloc_type);
     9         kx #endif
     9         kx 
     9         kx #ifdef HAVE_TARGET_64_BIG
     9         kx template
     9         kx void
     9         kx Layout::add_to_gdb_index(bool is_type_unit,
     9         kx 			 Sized_relobj<64, true>* object,
     9         kx 			 const unsigned char* symbols,
     9         kx 			 off_t symbols_size,
     9         kx 			 unsigned int shndx,
     9         kx 			 unsigned int reloc_shndx,
     9         kx 			 unsigned int reloc_type);
     9         kx #endif
     9         kx 
     9         kx } // End namespace gold.