Radix cross Linux Toolchains

Toolchains for all supported by Radix cross Linux devices

80 Commits   2 Branches   13 Tags
     9         kx // i386.cc -- i386 target support for gold.
     9         kx 
     9         kx // Copyright (C) 2006-2023 Free Software Foundation, Inc.
     9         kx // Written by Ian Lance Taylor <iant@google.com>.
     9         kx 
     9         kx // This file is part of gold.
     9         kx 
     9         kx // This program is free software; you can redistribute it and/or modify
     9         kx // it under the terms of the GNU General Public License as published by
     9         kx // the Free Software Foundation; either version 3 of the License, or
     9         kx // (at your option) any later version.
     9         kx 
     9         kx // This program is distributed in the hope that it will be useful,
     9         kx // but WITHOUT ANY WARRANTY; without even the implied warranty of
     9         kx // MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
     9         kx // GNU General Public License for more details.
     9         kx 
     9         kx // You should have received a copy of the GNU General Public License
     9         kx // along with this program; if not, write to the Free Software
     9         kx // Foundation, Inc., 51 Franklin Street - Fifth Floor, Boston,
     9         kx // MA 02110-1301, USA.
     9         kx 
     9         kx #include "gold.h"
     9         kx 
     9         kx #include <cstring>
     9         kx 
     9         kx #include "elfcpp.h"
     9         kx #include "dwarf.h"
     9         kx #include "parameters.h"
     9         kx #include "reloc.h"
     9         kx #include "i386.h"
     9         kx #include "object.h"
     9         kx #include "symtab.h"
     9         kx #include "layout.h"
     9         kx #include "output.h"
     9         kx #include "copy-relocs.h"
     9         kx #include "target.h"
     9         kx #include "target-reloc.h"
     9         kx #include "target-select.h"
     9         kx #include "tls.h"
     9         kx #include "freebsd.h"
     9         kx #include "nacl.h"
     9         kx #include "gc.h"
     9         kx 
     9         kx namespace
     9         kx {
     9         kx 
     9         kx using namespace gold;
     9         kx 
     9         kx // A class to handle the .got.plt section.
     9         kx 
     9         kx class Output_data_got_plt_i386 : public Output_section_data_build
     9         kx {
     9         kx  public:
     9         kx   Output_data_got_plt_i386(Layout* layout)
     9         kx     : Output_section_data_build(4),
     9         kx       layout_(layout)
     9         kx   { }
     9         kx 
     9         kx  protected:
     9         kx   // Write out the PLT data.
     9         kx   void
     9         kx   do_write(Output_file*);
     9         kx 
     9         kx   // Write to a map file.
     9         kx   void
     9         kx   do_print_to_mapfile(Mapfile* mapfile) const
     9         kx   { mapfile->print_output_data(this, "** GOT PLT"); }
     9         kx 
     9         kx  private:
     9         kx   // A pointer to the Layout class, so that we can find the .dynamic
     9         kx   // section when we write out the GOT PLT section.
     9         kx   Layout* layout_;
     9         kx };
     9         kx 
     9         kx // A class to handle the PLT data.
     9         kx // This is an abstract base class that handles most of the linker details
     9         kx // but does not know the actual contents of PLT entries.  The derived
     9         kx // classes below fill in those details.
     9         kx 
     9         kx class Output_data_plt_i386 : public Output_section_data
     9         kx {
     9         kx  public:
     9         kx   typedef Output_data_reloc<elfcpp::SHT_REL, true, 32, false> Reloc_section;
     9         kx 
     9         kx   Output_data_plt_i386(Layout*, uint64_t addralign,
     9         kx 		       Output_data_got_plt_i386*, Output_data_space*);
     9         kx 
     9         kx   // Add an entry to the PLT.
     9         kx   void
     9         kx   add_entry(Symbol_table*, Layout*, Symbol* gsym);
     9         kx 
     9         kx   // Add an entry to the PLT for a local STT_GNU_IFUNC symbol.
     9         kx   unsigned int
     9         kx   add_local_ifunc_entry(Symbol_table*, Layout*,
     9         kx 			Sized_relobj_file<32, false>* relobj,
     9         kx 			unsigned int local_sym_index);
     9         kx 
     9         kx   // Return the .rel.plt section data.
     9         kx   Reloc_section*
     9         kx   rel_plt() const
     9         kx   { return this->rel_; }
     9         kx 
     9         kx   // Return where the TLS_DESC relocations should go.
     9         kx   Reloc_section*
     9         kx   rel_tls_desc(Layout*);
     9         kx 
     9         kx   // Return where the IRELATIVE relocations should go.
     9         kx   Reloc_section*
     9         kx   rel_irelative(Symbol_table*, Layout*);
     9         kx 
     9         kx   // Return whether we created a section for IRELATIVE relocations.
     9         kx   bool
     9         kx   has_irelative_section() const
     9         kx   { return this->irelative_rel_ != NULL; }
     9         kx 
     9         kx   // Return the number of PLT entries.
     9         kx   unsigned int
     9         kx   entry_count() const
     9         kx   { return this->count_ + this->irelative_count_; }
     9         kx 
     9         kx   // Return the offset of the first non-reserved PLT entry.
     9         kx   unsigned int
     9         kx   first_plt_entry_offset()
     9         kx   { return this->get_plt_entry_size(); }
     9         kx 
     9         kx   // Return the size of a PLT entry.
     9         kx   unsigned int
     9         kx   get_plt_entry_size() const
     9         kx   { return this->do_get_plt_entry_size(); }
     9         kx 
     9         kx   // Return the PLT address to use for a global symbol.
     9         kx   uint64_t
     9         kx   address_for_global(const Symbol*);
     9         kx 
     9         kx   // Return the PLT address to use for a local symbol.
     9         kx   uint64_t
     9         kx   address_for_local(const Relobj*, unsigned int symndx);
     9         kx 
     9         kx   // Add .eh_frame information for the PLT.
     9         kx   void
     9         kx   add_eh_frame(Layout* layout)
     9         kx   { this->do_add_eh_frame(layout); }
     9         kx 
     9         kx  protected:
     9         kx   // Fill the first PLT entry, given the pointer to the PLT section data
     9         kx   // and the runtime address of the GOT.
     9         kx   void
     9         kx   fill_first_plt_entry(unsigned char* pov,
     9         kx 		       elfcpp::Elf_types<32>::Elf_Addr got_address)
     9         kx   { this->do_fill_first_plt_entry(pov, got_address); }
     9         kx 
     9         kx   // Fill a normal PLT entry, given the pointer to the entry's data in the
     9         kx   // section, the runtime address of the GOT, the offset into the GOT of
     9         kx   // the corresponding slot, the offset into the relocation section of the
     9         kx   // corresponding reloc, and the offset of this entry within the whole
     9         kx   // PLT.  Return the offset from this PLT entry's runtime address that
     9         kx   // should be used to compute the initial value of the GOT slot.
     9         kx   unsigned int
     9         kx   fill_plt_entry(unsigned char* pov,
     9         kx 		 elfcpp::Elf_types<32>::Elf_Addr got_address,
     9         kx 		 unsigned int got_offset,
     9         kx 		 unsigned int plt_offset,
     9         kx 		 unsigned int plt_rel_offset)
     9         kx   {
     9         kx     return this->do_fill_plt_entry(pov, got_address, got_offset,
     9         kx 				   plt_offset, plt_rel_offset);
     9         kx   }
     9         kx 
     9         kx   virtual unsigned int
     9         kx   do_get_plt_entry_size() const = 0;
     9         kx 
     9         kx   virtual void
     9         kx   do_fill_first_plt_entry(unsigned char* pov,
     9         kx 			  elfcpp::Elf_types<32>::Elf_Addr got_address) = 0;
     9         kx 
     9         kx   virtual unsigned int
     9         kx   do_fill_plt_entry(unsigned char* pov,
     9         kx 		    elfcpp::Elf_types<32>::Elf_Addr got_address,
     9         kx 		    unsigned int got_offset,
     9         kx 		    unsigned int plt_offset,
     9         kx 		    unsigned int plt_rel_offset) = 0;
     9         kx 
     9         kx   virtual void
     9         kx   do_add_eh_frame(Layout*) = 0;
     9         kx 
     9         kx   void
     9         kx   do_adjust_output_section(Output_section* os);
     9         kx 
     9         kx   // Write to a map file.
     9         kx   void
     9         kx   do_print_to_mapfile(Mapfile* mapfile) const
     9         kx   { mapfile->print_output_data(this, _("** PLT")); }
     9         kx 
     9         kx   // The .eh_frame unwind information for the PLT.
     9         kx   // The CIE is common across variants of the PLT format.
     9         kx   static const int plt_eh_frame_cie_size = 16;
     9         kx   static const unsigned char plt_eh_frame_cie[plt_eh_frame_cie_size];
     9         kx 
     9         kx  private:
     9         kx   // Set the final size.
     9         kx   void
     9         kx   set_final_data_size()
     9         kx   {
     9         kx     this->set_data_size((this->count_ + this->irelative_count_ + 1)
     9         kx 			* this->get_plt_entry_size());
     9         kx   }
     9         kx 
     9         kx   // Write out the PLT data.
     9         kx   void
     9         kx   do_write(Output_file*);
     9         kx 
     9         kx   // We keep a list of global STT_GNU_IFUNC symbols, each with its
     9         kx   // offset in the GOT.
     9         kx   struct Global_ifunc
     9         kx   {
     9         kx     Symbol* sym;
     9         kx     unsigned int got_offset;
     9         kx   };
     9         kx 
     9         kx   // We keep a list of local STT_GNU_IFUNC symbols, each with its
     9         kx   // offset in the GOT.
     9         kx   struct Local_ifunc
     9         kx   {
     9         kx     Sized_relobj_file<32, false>* object;
     9         kx     unsigned int local_sym_index;
     9         kx     unsigned int got_offset;
     9         kx   };
     9         kx 
     9         kx   // The reloc section.
     9         kx   Reloc_section* rel_;
     9         kx   // The TLS_DESC relocations, if necessary.  These must follow the
     9         kx   // regular PLT relocs.
     9         kx   Reloc_section* tls_desc_rel_;
     9         kx   // The IRELATIVE relocations, if necessary.  These must follow the
     9         kx   // regular relocatoins and the TLS_DESC relocations.
     9         kx   Reloc_section* irelative_rel_;
     9         kx   // The .got.plt section.
     9         kx   Output_data_got_plt_i386* got_plt_;
     9         kx   // The part of the .got.plt section used for IRELATIVE relocs.
     9         kx   Output_data_space* got_irelative_;
     9         kx   // The number of PLT entries.
     9         kx   unsigned int count_;
     9         kx   // Number of PLT entries with R_386_IRELATIVE relocs.  These follow
     9         kx   // the regular PLT entries.
     9         kx   unsigned int irelative_count_;
     9         kx   // Global STT_GNU_IFUNC symbols.
     9         kx   std::vector<Global_ifunc> global_ifuncs_;
     9         kx   // Local STT_GNU_IFUNC symbols.
     9         kx   std::vector<Local_ifunc> local_ifuncs_;
     9         kx };
     9         kx 
     9         kx // This is an abstract class for the standard PLT layout.
     9         kx // The derived classes below handle the actual PLT contents
     9         kx // for the executable (non-PIC) and shared-library (PIC) cases.
     9         kx // The unwind information is uniform across those two, so it's here.
     9         kx 
     9         kx class Output_data_plt_i386_standard : public Output_data_plt_i386
     9         kx {
     9         kx  public:
     9         kx   Output_data_plt_i386_standard(Layout* layout,
     9         kx 				Output_data_got_plt_i386* got_plt,
     9         kx 				Output_data_space* got_irelative)
     9         kx     : Output_data_plt_i386(layout, plt_entry_size, got_plt, got_irelative)
     9         kx   { }
     9         kx 
     9         kx  protected:
     9         kx   virtual unsigned int
     9         kx   do_get_plt_entry_size() const
     9         kx   { return plt_entry_size; }
     9         kx 
     9         kx   virtual void
     9         kx   do_add_eh_frame(Layout* layout)
     9         kx   {
     9         kx     layout->add_eh_frame_for_plt(this, plt_eh_frame_cie, plt_eh_frame_cie_size,
     9         kx 				 plt_eh_frame_fde, plt_eh_frame_fde_size);
     9         kx   }
     9         kx 
     9         kx   // The size of an entry in the PLT.
     9         kx   static const int plt_entry_size = 16;
     9         kx 
     9         kx   // The .eh_frame unwind information for the PLT.
     9         kx   static const int plt_eh_frame_fde_size = 32;
     9         kx   static const unsigned char plt_eh_frame_fde[plt_eh_frame_fde_size];
     9         kx };
     9         kx 
     9         kx // Actually fill the PLT contents for an executable (non-PIC).
     9         kx 
     9         kx class Output_data_plt_i386_exec : public Output_data_plt_i386_standard
     9         kx {
     9         kx public:
     9         kx   Output_data_plt_i386_exec(Layout* layout,
     9         kx 			    Output_data_got_plt_i386* got_plt,
     9         kx 			    Output_data_space* got_irelative)
     9         kx     : Output_data_plt_i386_standard(layout, got_plt, got_irelative)
     9         kx   { }
     9         kx 
     9         kx  protected:
     9         kx   virtual void
     9         kx   do_fill_first_plt_entry(unsigned char* pov,
     9         kx 			  elfcpp::Elf_types<32>::Elf_Addr got_address);
     9         kx 
     9         kx   virtual unsigned int
     9         kx   do_fill_plt_entry(unsigned char* pov,
     9         kx 		    elfcpp::Elf_types<32>::Elf_Addr got_address,
     9         kx 		    unsigned int got_offset,
     9         kx 		    unsigned int plt_offset,
     9         kx 		    unsigned int plt_rel_offset);
     9         kx 
     9         kx  private:
     9         kx   // The first entry in the PLT for an executable.
     9         kx   static const unsigned char first_plt_entry[plt_entry_size];
     9         kx 
     9         kx   // Other entries in the PLT for an executable.
     9         kx   static const unsigned char plt_entry[plt_entry_size];
     9         kx };
     9         kx 
     9         kx // Actually fill the PLT contents for a shared library (PIC).
     9         kx 
     9         kx class Output_data_plt_i386_dyn : public Output_data_plt_i386_standard
     9         kx {
     9         kx  public:
     9         kx   Output_data_plt_i386_dyn(Layout* layout,
     9         kx 			   Output_data_got_plt_i386* got_plt,
     9         kx 			   Output_data_space* got_irelative)
     9         kx     : Output_data_plt_i386_standard(layout, got_plt, got_irelative)
     9         kx   { }
     9         kx 
     9         kx  protected:
     9         kx   virtual void
     9         kx   do_fill_first_plt_entry(unsigned char* pov, elfcpp::Elf_types<32>::Elf_Addr);
     9         kx 
     9         kx   virtual unsigned int
     9         kx   do_fill_plt_entry(unsigned char* pov,
     9         kx 		    elfcpp::Elf_types<32>::Elf_Addr,
     9         kx 		    unsigned int got_offset,
     9         kx 		    unsigned int plt_offset,
     9         kx 		    unsigned int plt_rel_offset);
     9         kx 
     9         kx  private:
     9         kx   // The first entry in the PLT for a shared object.
     9         kx   static const unsigned char first_plt_entry[plt_entry_size];
     9         kx 
     9         kx   // Other entries in the PLT for a shared object.
     9         kx   static const unsigned char plt_entry[plt_entry_size];
     9         kx };
     9         kx 
     9         kx // The i386 target class.
     9         kx // TLS info comes from
     9         kx //   http://people.redhat.com/drepper/tls.pdf
     9         kx //   http://www.lsd.ic.unicamp.br/~oliva/writeups/TLS/RFC-TLSDESC-x86.txt
     9         kx 
     9         kx class Target_i386 : public Sized_target<32, false>
     9         kx {
     9         kx  public:
     9         kx   typedef Output_data_reloc<elfcpp::SHT_REL, true, 32, false> Reloc_section;
     9         kx 
     9         kx   Target_i386(const Target::Target_info* info = &i386_info)
     9         kx     : Sized_target<32, false>(info),
     9         kx       got_(NULL), plt_(NULL), got_plt_(NULL), got_irelative_(NULL),
     9         kx       got_tlsdesc_(NULL), global_offset_table_(NULL), rel_dyn_(NULL),
     9         kx       rel_irelative_(NULL), copy_relocs_(elfcpp::R_386_COPY),
     9         kx       got_mod_index_offset_(-1U), tls_base_symbol_defined_(false),
     9         kx       isa_1_used_(0), isa_1_needed_(0),
     9         kx       feature_1_(0), feature_2_used_(0), feature_2_needed_(0),
     9         kx       object_isa_1_used_(0), object_feature_1_(0),
     9         kx       object_feature_2_used_(0), seen_first_object_(false)
     9         kx   { }
     9         kx 
     9         kx   // Process the relocations to determine unreferenced sections for
     9         kx   // garbage collection.
     9         kx   void
     9         kx   gc_process_relocs(Symbol_table* symtab,
     9         kx 		    Layout* layout,
     9         kx 		    Sized_relobj_file<32, false>* object,
     9         kx 		    unsigned int data_shndx,
     9         kx 		    unsigned int sh_type,
     9         kx 		    const unsigned char* prelocs,
     9         kx 		    size_t reloc_count,
     9         kx 		    Output_section* output_section,
     9         kx 		    bool needs_special_offset_handling,
     9         kx 		    size_t local_symbol_count,
     9         kx 		    const unsigned char* plocal_symbols);
     9         kx 
     9         kx   // Scan the relocations to look for symbol adjustments.
     9         kx   void
     9         kx   scan_relocs(Symbol_table* symtab,
     9         kx 	      Layout* layout,
     9         kx 	      Sized_relobj_file<32, false>* object,
     9         kx 	      unsigned int data_shndx,
     9         kx 	      unsigned int sh_type,
     9         kx 	      const unsigned char* prelocs,
     9         kx 	      size_t reloc_count,
     9         kx 	      Output_section* output_section,
     9         kx 	      bool needs_special_offset_handling,
     9         kx 	      size_t local_symbol_count,
     9         kx 	      const unsigned char* plocal_symbols);
     9         kx 
     9         kx   // Finalize the sections.
     9         kx   void
     9         kx   do_finalize_sections(Layout*, const Input_objects*, Symbol_table*);
     9         kx 
     9         kx   // Return the value to use for a dynamic which requires special
     9         kx   // treatment.
     9         kx   uint64_t
     9         kx   do_dynsym_value(const Symbol*) const;
     9         kx 
     9         kx   // Relocate a section.
     9         kx   void
     9         kx   relocate_section(const Relocate_info<32, false>*,
     9         kx 		   unsigned int sh_type,
     9         kx 		   const unsigned char* prelocs,
     9         kx 		   size_t reloc_count,
     9         kx 		   Output_section* output_section,
     9         kx 		   bool needs_special_offset_handling,
     9         kx 		   unsigned char* view,
     9         kx 		   elfcpp::Elf_types<32>::Elf_Addr view_address,
     9         kx 		   section_size_type view_size,
     9         kx 		   const Reloc_symbol_changes*);
     9         kx 
     9         kx   // Scan the relocs during a relocatable link.
     9         kx   void
     9         kx   scan_relocatable_relocs(Symbol_table* symtab,
     9         kx 			  Layout* layout,
     9         kx 			  Sized_relobj_file<32, false>* object,
     9         kx 			  unsigned int data_shndx,
     9         kx 			  unsigned int sh_type,
     9         kx 			  const unsigned char* prelocs,
     9         kx 			  size_t reloc_count,
     9         kx 			  Output_section* output_section,
     9         kx 			  bool needs_special_offset_handling,
     9         kx 			  size_t local_symbol_count,
     9         kx 			  const unsigned char* plocal_symbols,
     9         kx 			  Relocatable_relocs*);
     9         kx 
     9         kx   // Scan the relocs for --emit-relocs.
     9         kx   void
     9         kx   emit_relocs_scan(Symbol_table* symtab,
     9         kx 		   Layout* layout,
     9         kx 		   Sized_relobj_file<32, false>* object,
     9         kx 		   unsigned int data_shndx,
     9         kx 		   unsigned int sh_type,
     9         kx 		   const unsigned char* prelocs,
     9         kx 		   size_t reloc_count,
     9         kx 		   Output_section* output_section,
     9         kx 		   bool needs_special_offset_handling,
     9         kx 		   size_t local_symbol_count,
     9         kx 		   const unsigned char* plocal_syms,
     9         kx 		   Relocatable_relocs* rr);
     9         kx 
     9         kx   // Emit relocations for a section.
     9         kx   void
     9         kx   relocate_relocs(const Relocate_info<32, false>*,
     9         kx 		  unsigned int sh_type,
     9         kx 		  const unsigned char* prelocs,
     9         kx 		  size_t reloc_count,
     9         kx 		  Output_section* output_section,
     9         kx 		  elfcpp::Elf_types<32>::Elf_Off offset_in_output_section,
     9         kx 		  unsigned char* view,
     9         kx 		  elfcpp::Elf_types<32>::Elf_Addr view_address,
     9         kx 		  section_size_type view_size,
     9         kx 		  unsigned char* reloc_view,
     9         kx 		  section_size_type reloc_view_size);
     9         kx 
     9         kx   // Return a string used to fill a code section with nops.
     9         kx   std::string
     9         kx   do_code_fill(section_size_type length) const;
     9         kx 
     9         kx   // Return whether SYM is defined by the ABI.
     9         kx   bool
     9         kx   do_is_defined_by_abi(const Symbol* sym) const
     9         kx   { return strcmp(sym->name(), "___tls_get_addr") == 0; }
     9         kx 
     9         kx   // Return whether a symbol name implies a local label.  The UnixWare
     9         kx   // 2.1 cc generates temporary symbols that start with .X, so we
     9         kx   // recognize them here.  FIXME: do other SVR4 compilers also use .X?.
     9         kx   // If so, we should move the .X recognition into
     9         kx   // Target::do_is_local_label_name.
     9         kx   bool
     9         kx   do_is_local_label_name(const char* name) const
     9         kx   {
     9         kx     if (name[0] == '.' && name[1] == 'X')
     9         kx       return true;
     9         kx     return Target::do_is_local_label_name(name);
     9         kx   }
     9         kx 
     9         kx   // Return the PLT address to use for a global symbol.
     9         kx   uint64_t
     9         kx   do_plt_address_for_global(const Symbol* gsym) const
     9         kx   { return this->plt_section()->address_for_global(gsym); }
     9         kx 
     9         kx   uint64_t
     9         kx   do_plt_address_for_local(const Relobj* relobj, unsigned int symndx) const
     9         kx   { return this->plt_section()->address_for_local(relobj, symndx); }
     9         kx 
     9         kx   // We can tell whether we take the address of a function.
     9         kx   inline bool
     9         kx   do_can_check_for_function_pointers() const
     9         kx   { return true; }
     9         kx 
     9         kx   // Return the base for a DW_EH_PE_datarel encoding.
     9         kx   uint64_t
     9         kx   do_ehframe_datarel_base() const;
     9         kx 
     9         kx   // Return whether SYM is call to a non-split function.
     9         kx   bool
     9         kx   do_is_call_to_non_split(const Symbol* sym, const unsigned char*,
     9         kx 			  const unsigned char*, section_size_type) const;
     9         kx 
     9         kx   // Adjust -fsplit-stack code which calls non-split-stack code.
     9         kx   void
     9         kx   do_calls_non_split(Relobj* object, unsigned int shndx,
     9         kx 		     section_offset_type fnoffset, section_size_type fnsize,
     9         kx 		     const unsigned char* prelocs, size_t reloc_count,
     9         kx 		     unsigned char* view, section_size_type view_size,
     9         kx 		     std::string* from, std::string* to) const;
     9         kx 
     9         kx   // Return the size of the GOT section.
     9         kx   section_size_type
     9         kx   got_size() const
     9         kx   {
     9         kx     gold_assert(this->got_ != NULL);
     9         kx     return this->got_->data_size();
     9         kx   }
     9         kx 
     9         kx   // Return the number of entries in the GOT.
     9         kx   unsigned int
     9         kx   got_entry_count() const
     9         kx   {
     9         kx     if (this->got_ == NULL)
     9         kx       return 0;
     9         kx     return this->got_size() / 4;
     9         kx   }
     9         kx 
     9         kx   // Return the number of entries in the PLT.
     9         kx   unsigned int
     9         kx   plt_entry_count() const;
     9         kx 
     9         kx   // Return the offset of the first non-reserved PLT entry.
     9         kx   unsigned int
     9         kx   first_plt_entry_offset() const;
     9         kx 
     9         kx   // Return the size of each PLT entry.
     9         kx   unsigned int
     9         kx   plt_entry_size() const;
     9         kx 
     9         kx  protected:
     9         kx   // Instantiate the plt_ member.
     9         kx   // This chooses the right PLT flavor for an executable or a shared object.
     9         kx   Output_data_plt_i386*
     9         kx   make_data_plt(Layout* layout,
     9         kx 		Output_data_got_plt_i386* got_plt,
     9         kx 		Output_data_space* got_irelative,
     9         kx 		bool dyn)
     9         kx   { return this->do_make_data_plt(layout, got_plt, got_irelative, dyn); }
     9         kx 
     9         kx   virtual Output_data_plt_i386*
     9         kx   do_make_data_plt(Layout* layout,
     9         kx 		   Output_data_got_plt_i386* got_plt,
     9         kx 		   Output_data_space* got_irelative,
     9         kx 		   bool dyn)
     9         kx   {
     9         kx     if (dyn)
     9         kx       return new Output_data_plt_i386_dyn(layout, got_plt, got_irelative);
     9         kx     else
     9         kx       return new Output_data_plt_i386_exec(layout, got_plt, got_irelative);
     9         kx   }
     9         kx 
     9         kx  private:
     9         kx   // The class which scans relocations.
     9         kx   struct Scan
     9         kx   {
     9         kx     static inline int
     9         kx 
     9         kx     get_reference_flags(unsigned int r_type);
     9         kx 
     9         kx     inline void
     9         kx     local(Symbol_table* symtab, Layout* layout, Target_i386* target,
     9         kx 	  Sized_relobj_file<32, false>* object,
     9         kx 	  unsigned int data_shndx,
     9         kx 	  Output_section* output_section,
     9         kx 	  const elfcpp::Rel<32, false>& reloc, unsigned int r_type,
     9         kx 	  const elfcpp::Sym<32, false>& lsym,
     9         kx 	  bool is_discarded);
     9         kx 
     9         kx     inline void
     9         kx     global(Symbol_table* symtab, Layout* layout, Target_i386* target,
     9         kx 	   Sized_relobj_file<32, false>* object,
     9         kx 	   unsigned int data_shndx,
     9         kx 	   Output_section* output_section,
     9         kx 	   const elfcpp::Rel<32, false>& reloc, unsigned int r_type,
     9         kx 	   Symbol* gsym);
     9         kx 
     9         kx     inline bool
     9         kx     local_reloc_may_be_function_pointer(Symbol_table* symtab, Layout* layout,
     9         kx 					Target_i386* target,
     9         kx 					Sized_relobj_file<32, false>* object,
     9         kx 					unsigned int data_shndx,
     9         kx 					Output_section* output_section,
     9         kx 					const elfcpp::Rel<32, false>& reloc,
     9         kx 					unsigned int r_type,
     9         kx 					const elfcpp::Sym<32, false>& lsym);
     9         kx 
     9         kx     inline bool
     9         kx     global_reloc_may_be_function_pointer(Symbol_table* symtab, Layout* layout,
     9         kx 					 Target_i386* target,
     9         kx 					 Sized_relobj_file<32, false>* object,
     9         kx 					 unsigned int data_shndx,
     9         kx 					 Output_section* output_section,
     9         kx 					 const elfcpp::Rel<32, false>& reloc,
     9         kx 					 unsigned int r_type,
     9         kx 					 Symbol* gsym);
     9         kx 
     9         kx     inline bool
     9         kx     possible_function_pointer_reloc(unsigned int r_type);
     9         kx 
     9         kx     bool
     9         kx     reloc_needs_plt_for_ifunc(Sized_relobj_file<32, false>*,
     9         kx 			      unsigned int r_type);
     9         kx 
     9         kx     static void
     9         kx     unsupported_reloc_local(Sized_relobj_file<32, false>*, unsigned int r_type);
     9         kx 
     9         kx     static void
     9         kx     unsupported_reloc_global(Sized_relobj_file<32, false>*, unsigned int r_type,
     9         kx 			     Symbol*);
     9         kx   };
     9         kx 
     9         kx   // The class which implements relocation.
     9         kx   class Relocate
     9         kx   {
     9         kx    public:
     9         kx     Relocate()
     9         kx       : skip_call_tls_get_addr_(false),
     9         kx 	local_dynamic_type_(LOCAL_DYNAMIC_NONE)
     9         kx     { }
     9         kx 
     9         kx     ~Relocate()
     9         kx     {
     9         kx       if (this->skip_call_tls_get_addr_)
     9         kx 	{
     9         kx 	  // FIXME: This needs to specify the location somehow.
     9         kx 	  gold_error(_("missing expected TLS relocation"));
     9         kx 	}
     9         kx     }
     9         kx 
     9         kx     // Return whether the static relocation needs to be applied.
     9         kx     inline bool
     9         kx     should_apply_static_reloc(const Sized_symbol<32>* gsym,
     9         kx 			      unsigned int r_type,
     9         kx 			      bool is_32bit,
     9         kx 			      Output_section* output_section);
     9         kx 
     9         kx     // Do a relocation.  Return false if the caller should not issue
     9         kx     // any warnings about this relocation.
     9         kx     inline bool
     9         kx     relocate(const Relocate_info<32, false>*, unsigned int,
     9         kx 	     Target_i386*, Output_section*, size_t, const unsigned char*,
     9         kx 	     const Sized_symbol<32>*, const Symbol_value<32>*,
     9         kx 	     unsigned char*, elfcpp::Elf_types<32>::Elf_Addr,
     9         kx 	     section_size_type);
     9         kx 
     9         kx    private:
     9         kx     // Do a TLS relocation.
     9         kx     inline void
     9         kx     relocate_tls(const Relocate_info<32, false>*, Target_i386* target,
     9         kx 		 size_t relnum, const elfcpp::Rel<32, false>&,
     9         kx 		 unsigned int r_type, const Sized_symbol<32>*,
     9         kx 		 const Symbol_value<32>*,
     9         kx 		 unsigned char*, elfcpp::Elf_types<32>::Elf_Addr,
     9         kx 		 section_size_type);
     9         kx 
     9         kx     // Do a TLS General-Dynamic to Initial-Exec transition.
     9         kx     inline void
     9         kx     tls_gd_to_ie(const Relocate_info<32, false>*, size_t relnum,
     9         kx 		 const elfcpp::Rel<32, false>&, unsigned int r_type,
     9         kx 		 elfcpp::Elf_types<32>::Elf_Addr value,
     9         kx 		 unsigned char* view,
     9         kx 		 section_size_type view_size);
     9         kx 
     9         kx     // Do a TLS General-Dynamic to Local-Exec transition.
     9         kx     inline void
     9         kx     tls_gd_to_le(const Relocate_info<32, false>*, size_t relnum,
     9         kx 		 Output_segment* tls_segment,
     9         kx 		 const elfcpp::Rel<32, false>&, unsigned int r_type,
     9         kx 		 elfcpp::Elf_types<32>::Elf_Addr value,
     9         kx 		 unsigned char* view,
     9         kx 		 section_size_type view_size);
     9         kx 
     9         kx     // Do a TLS_GOTDESC or TLS_DESC_CALL General-Dynamic to Initial-Exec
     9         kx     // transition.
     9         kx     inline void
     9         kx     tls_desc_gd_to_ie(const Relocate_info<32, false>*, size_t relnum,
     9         kx 		      const elfcpp::Rel<32, false>&, unsigned int r_type,
     9         kx 		      elfcpp::Elf_types<32>::Elf_Addr value,
     9         kx 		      unsigned char* view,
     9         kx 		      section_size_type view_size);
     9         kx 
     9         kx     // Do a TLS_GOTDESC or TLS_DESC_CALL General-Dynamic to Local-Exec
     9         kx     // transition.
     9         kx     inline void
     9         kx     tls_desc_gd_to_le(const Relocate_info<32, false>*, size_t relnum,
     9         kx 		      Output_segment* tls_segment,
     9         kx 		      const elfcpp::Rel<32, false>&, unsigned int r_type,
     9         kx 		      elfcpp::Elf_types<32>::Elf_Addr value,
     9         kx 		      unsigned char* view,
     9         kx 		      section_size_type view_size);
     9         kx 
     9         kx     // Do a TLS Local-Dynamic to Local-Exec transition.
     9         kx     inline void
     9         kx     tls_ld_to_le(const Relocate_info<32, false>*, size_t relnum,
     9         kx 		 Output_segment* tls_segment,
     9         kx 		 const elfcpp::Rel<32, false>&, unsigned int r_type,
     9         kx 		 elfcpp::Elf_types<32>::Elf_Addr value,
     9         kx 		 unsigned char* view,
     9         kx 		 section_size_type view_size);
     9         kx 
     9         kx     // Do a TLS Initial-Exec to Local-Exec transition.
     9         kx     static inline void
     9         kx     tls_ie_to_le(const Relocate_info<32, false>*, size_t relnum,
     9         kx 		 Output_segment* tls_segment,
     9         kx 		 const elfcpp::Rel<32, false>&, unsigned int r_type,
     9         kx 		 elfcpp::Elf_types<32>::Elf_Addr value,
     9         kx 		 unsigned char* view,
     9         kx 		 section_size_type view_size);
     9         kx 
     9         kx     // We need to keep track of which type of local dynamic relocation
     9         kx     // we have seen, so that we can optimize R_386_TLS_LDO_32 correctly.
     9         kx     enum Local_dynamic_type
     9         kx     {
     9         kx       LOCAL_DYNAMIC_NONE,
     9         kx       LOCAL_DYNAMIC_SUN,
     9         kx       LOCAL_DYNAMIC_GNU
     9         kx     };
     9         kx 
     9         kx     // This is set if we should skip the next reloc, which should be a
     9         kx     // PLT32 reloc against ___tls_get_addr.
     9         kx     bool skip_call_tls_get_addr_;
     9         kx     // The type of local dynamic relocation we have seen in the section
     9         kx     // being relocated, if any.
     9         kx     Local_dynamic_type local_dynamic_type_;
     9         kx   };
     9         kx 
     9         kx   // A class for inquiring about properties of a relocation,
     9         kx   // used while scanning relocs during a relocatable link and
     9         kx   // garbage collection.
     9         kx   class Classify_reloc :
     9         kx       public gold::Default_classify_reloc<elfcpp::SHT_REL, 32, false>
     9         kx   {
     9         kx    public:
     9         kx     typedef Reloc_types<elfcpp::SHT_REL, 32, false>::Reloc Reltype;
     9         kx 
     9         kx     // Return the explicit addend of the relocation (return 0 for SHT_REL).
     9         kx     static elfcpp::Elf_types<32>::Elf_Swxword
     9         kx     get_r_addend(const Reltype*)
     9         kx     { return 0; }
     9         kx 
     9         kx     // Return the size of the addend of the relocation (only used for SHT_REL).
     9         kx     static unsigned int
     9         kx     get_size_for_reloc(unsigned int, Relobj*);
     9         kx   };
     9         kx 
     9         kx   // Adjust TLS relocation type based on the options and whether this
     9         kx   // is a local symbol.
     9         kx   static tls::Tls_optimization
     9         kx   optimize_tls_reloc(bool is_final, int r_type);
     9         kx 
     9         kx   // Check if relocation against this symbol is a candidate for
     9         kx   // conversion from
     9         kx   // mov foo@GOT(%reg), %reg
     9         kx   // to
     9         kx   // lea foo@GOTOFF(%reg), %reg.
     9         kx   static bool
     9         kx   can_convert_mov_to_lea(const Symbol* gsym)
     9         kx   {
     9         kx     gold_assert(gsym != NULL);
     9         kx     return (gsym->type() != elfcpp::STT_GNU_IFUNC
     9         kx 	    && !gsym->is_undefined ()
     9         kx 	    && !gsym->is_from_dynobj()
     9         kx 	    && !gsym->is_preemptible()
     9         kx 	    && (!parameters->options().shared()
     9         kx 		|| (gsym->visibility() != elfcpp::STV_DEFAULT
     9         kx 		    && gsym->visibility() != elfcpp::STV_PROTECTED)
     9         kx 		|| parameters->options().Bsymbolic())
     9         kx 	    && strcmp(gsym->name(), "_DYNAMIC") != 0);
     9         kx   }
     9         kx 
     9         kx   // Get the GOT section, creating it if necessary.
     9         kx   Output_data_got<32, false>*
     9         kx   got_section(Symbol_table*, Layout*);
     9         kx 
     9         kx   // Get the GOT PLT section.
     9         kx   Output_data_got_plt_i386*
     9         kx   got_plt_section() const
     9         kx   {
     9         kx     gold_assert(this->got_plt_ != NULL);
     9         kx     return this->got_plt_;
     9         kx   }
     9         kx 
     9         kx   // Get the GOT section for TLSDESC entries.
     9         kx   Output_data_got<32, false>*
     9         kx   got_tlsdesc_section() const
     9         kx   {
     9         kx     gold_assert(this->got_tlsdesc_ != NULL);
     9         kx     return this->got_tlsdesc_;
     9         kx   }
     9         kx 
     9         kx   // Create the PLT section.
     9         kx   void
     9         kx   make_plt_section(Symbol_table* symtab, Layout* layout);
     9         kx 
     9         kx   // Create a PLT entry for a global symbol.
     9         kx   void
     9         kx   make_plt_entry(Symbol_table*, Layout*, Symbol*);
     9         kx 
     9         kx   // Create a PLT entry for a local STT_GNU_IFUNC symbol.
     9         kx   void
     9         kx   make_local_ifunc_plt_entry(Symbol_table*, Layout*,
     9         kx 			     Sized_relobj_file<32, false>* relobj,
     9         kx 			     unsigned int local_sym_index);
     9         kx 
     9         kx   // Define the _TLS_MODULE_BASE_ symbol in the TLS segment.
     9         kx   void
     9         kx   define_tls_base_symbol(Symbol_table*, Layout*);
     9         kx 
     9         kx   // Create a GOT entry for the TLS module index.
     9         kx   unsigned int
     9         kx   got_mod_index_entry(Symbol_table* symtab, Layout* layout,
     9         kx 		      Sized_relobj_file<32, false>* object);
     9         kx 
     9         kx   // Get the PLT section.
     9         kx   Output_data_plt_i386*
     9         kx   plt_section() const
     9         kx   {
     9         kx     gold_assert(this->plt_ != NULL);
     9         kx     return this->plt_;
     9         kx   }
     9         kx 
     9         kx   // Get the dynamic reloc section, creating it if necessary.
     9         kx   Reloc_section*
     9         kx   rel_dyn_section(Layout*);
     9         kx 
     9         kx   // Get the section to use for TLS_DESC relocations.
     9         kx   Reloc_section*
     9         kx   rel_tls_desc_section(Layout*) const;
     9         kx 
     9         kx   // Get the section to use for IRELATIVE relocations.
     9         kx   Reloc_section*
     9         kx   rel_irelative_section(Layout*);
     9         kx 
     9         kx   // Add a potential copy relocation.
     9         kx   void
     9         kx   copy_reloc(Symbol_table* symtab, Layout* layout,
     9         kx 	     Sized_relobj_file<32, false>* object,
     9         kx 	     unsigned int shndx, Output_section* output_section,
     9         kx 	     Symbol* sym, const elfcpp::Rel<32, false>& reloc)
     9         kx   {
     9         kx     unsigned int r_type = elfcpp::elf_r_type<32>(reloc.get_r_info());
     9         kx     this->copy_relocs_.copy_reloc(symtab, layout,
     9         kx 				  symtab->get_sized_symbol<32>(sym),
     9         kx 				  object, shndx, output_section,
     9         kx 				  r_type, reloc.get_r_offset(), 0,
     9         kx 				  this->rel_dyn_section(layout));
     9         kx   }
     9         kx 
     9         kx   // Record a target-specific program property in the .note.gnu.property
     9         kx   // section.
     9         kx   void
     9         kx   record_gnu_property(unsigned int, unsigned int, size_t,
     9         kx 		      const unsigned char*, const Object*);
     9         kx 
     9         kx   // Merge the target-specific program properties from the current object.
     9         kx   void
     9         kx   merge_gnu_properties(const Object*);
     9         kx 
     9         kx   // Finalize the target-specific program properties and add them back to
     9         kx   // the layout.
     9         kx   void
     9         kx   do_finalize_gnu_properties(Layout*) const;
     9         kx 
     9         kx   // Information about this specific target which we pass to the
     9         kx   // general Target structure.
     9         kx   static const Target::Target_info i386_info;
     9         kx 
     9         kx   // The types of GOT entries needed for this platform.
     9         kx   // These values are exposed to the ABI in an incremental link.
     9         kx   // Do not renumber existing values without changing the version
     9         kx   // number of the .gnu_incremental_inputs section.
     9         kx   enum Got_type
     9         kx   {
     9         kx     GOT_TYPE_STANDARD = 0,      // GOT entry for a regular symbol
     9         kx     GOT_TYPE_TLS_NOFFSET = 1,   // GOT entry for negative TLS offset
     9         kx     GOT_TYPE_TLS_OFFSET = 2,    // GOT entry for positive TLS offset
     9         kx     GOT_TYPE_TLS_PAIR = 3,      // GOT entry for TLS module/offset pair
     9         kx     GOT_TYPE_TLS_DESC = 4       // GOT entry for TLS_DESC pair
     9         kx   };
     9         kx 
     9         kx   // The GOT section.
     9         kx   Output_data_got<32, false>* got_;
     9         kx   // The PLT section.
     9         kx   Output_data_plt_i386* plt_;
     9         kx   // The GOT PLT section.
     9         kx   Output_data_got_plt_i386* got_plt_;
     9         kx   // The GOT section for IRELATIVE relocations.
     9         kx   Output_data_space* got_irelative_;
     9         kx   // The GOT section for TLSDESC relocations.
     9         kx   Output_data_got<32, false>* got_tlsdesc_;
     9         kx   // The _GLOBAL_OFFSET_TABLE_ symbol.
     9         kx   Symbol* global_offset_table_;
     9         kx   // The dynamic reloc section.
     9         kx   Reloc_section* rel_dyn_;
     9         kx   // The section to use for IRELATIVE relocs.
     9         kx   Reloc_section* rel_irelative_;
     9         kx   // Relocs saved to avoid a COPY reloc.
     9         kx   Copy_relocs<elfcpp::SHT_REL, 32, false> copy_relocs_;
     9         kx   // Offset of the GOT entry for the TLS module index.
     9         kx   unsigned int got_mod_index_offset_;
     9         kx   // True if the _TLS_MODULE_BASE_ symbol has been defined.
     9         kx   bool tls_base_symbol_defined_;
     9         kx 
     9         kx   // Target-specific program properties, from .note.gnu.property section.
     9         kx   // Each bit represents a specific feature.
     9         kx   uint32_t isa_1_used_;
     9         kx   uint32_t isa_1_needed_;
     9         kx   uint32_t feature_1_;
     9         kx   uint32_t feature_2_used_;
     9         kx   uint32_t feature_2_needed_;
     9         kx   // Target-specific properties from the current object.
     9         kx   // These bits get ORed into ISA_1_USED_ after all properties for the object
     9         kx   // have been processed. But if either is all zeroes (as when the property
     9         kx   // is absent from an object), the result should be all zeroes.
     9         kx   // (See PR ld/23486.)
     9         kx   uint32_t object_isa_1_used_;
     9         kx   // These bits get ANDed into FEATURE_1_ after all properties for the object
     9         kx   // have been processed.
     9         kx   uint32_t object_feature_1_;
     9         kx   uint32_t object_feature_2_used_;
     9         kx   // Whether we have seen our first object, for use in initializing FEATURE_1_.
     9         kx   bool seen_first_object_;
     9         kx };
     9         kx 
     9         kx const Target::Target_info Target_i386::i386_info =
     9         kx {
     9         kx   32,			// size
     9         kx   false,		// is_big_endian
     9         kx   elfcpp::EM_386,	// machine_code
     9         kx   false,		// has_make_symbol
     9         kx   false,		// has_resolve
     9         kx   true,			// has_code_fill
     9         kx   true,			// is_default_stack_executable
     9         kx   true,			// can_icf_inline_merge_sections
     9         kx   '\0',			// wrap_char
     9         kx   "/usr/lib/libc.so.1",	// dynamic_linker
     9         kx   0x08048000,		// default_text_segment_address
     9         kx   0x1000,		// abi_pagesize (overridable by -z max-page-size)
     9         kx   0x1000,		// common_pagesize (overridable by -z common-page-size)
     9         kx   false,                // isolate_execinstr
     9         kx   0,                    // rosegment_gap
     9         kx   elfcpp::SHN_UNDEF,	// small_common_shndx
     9         kx   elfcpp::SHN_UNDEF,	// large_common_shndx
     9         kx   0,			// small_common_section_flags
     9         kx   0,			// large_common_section_flags
     9         kx   NULL,			// attributes_section
     9         kx   NULL,			// attributes_vendor
     9         kx   "_start",		// entry_symbol_name
     9         kx   32,			// hash_entry_size
     9         kx   elfcpp::SHT_PROGBITS,	// unwind_section_type
     9         kx };
     9         kx 
     9         kx // Get the GOT section, creating it if necessary.
     9         kx 
     9         kx Output_data_got<32, false>*
     9         kx Target_i386::got_section(Symbol_table* symtab, Layout* layout)
     9         kx {
     9         kx   if (this->got_ == NULL)
     9         kx     {
     9         kx       gold_assert(symtab != NULL && layout != NULL);
     9         kx 
     9         kx       this->got_ = new Output_data_got<32, false>();
     9         kx 
     9         kx       // When using -z now, we can treat .got.plt as a relro section.
     9         kx       // Without -z now, it is modified after program startup by lazy
     9         kx       // PLT relocations.
     9         kx       bool is_got_plt_relro = parameters->options().now();
     9         kx       Output_section_order got_order = (is_got_plt_relro
     9         kx 					? ORDER_RELRO
     9         kx 					: ORDER_RELRO_LAST);
     9         kx       Output_section_order got_plt_order = (is_got_plt_relro
     9         kx 					    ? ORDER_RELRO
     9         kx 					    : ORDER_NON_RELRO_FIRST);
     9         kx 
     9         kx       layout->add_output_section_data(".got", elfcpp::SHT_PROGBITS,
     9         kx 				      (elfcpp::SHF_ALLOC
     9         kx 				       | elfcpp::SHF_WRITE),
     9         kx 				      this->got_, got_order, true);
     9         kx 
     9         kx       this->got_plt_ = new Output_data_got_plt_i386(layout);
     9         kx       layout->add_output_section_data(".got.plt", elfcpp::SHT_PROGBITS,
     9         kx 				      (elfcpp::SHF_ALLOC
     9         kx 				       | elfcpp::SHF_WRITE),
     9         kx 				      this->got_plt_, got_plt_order,
     9         kx 				      is_got_plt_relro);
     9         kx 
     9         kx       // The first three entries are reserved.
     9         kx       this->got_plt_->set_current_data_size(3 * 4);
     9         kx 
     9         kx       if (!is_got_plt_relro)
     9         kx 	{
     9         kx 	  // Those bytes can go into the relro segment.
     9         kx 	  layout->increase_relro(3 * 4);
     9         kx 	}
     9         kx 
     9         kx       // Define _GLOBAL_OFFSET_TABLE_ at the start of the PLT.
     9         kx       this->global_offset_table_ =
     9         kx 	symtab->define_in_output_data("_GLOBAL_OFFSET_TABLE_", NULL,
     9         kx 				      Symbol_table::PREDEFINED,
     9         kx 				      this->got_plt_,
     9         kx 				      0, 0, elfcpp::STT_OBJECT,
     9         kx 				      elfcpp::STB_LOCAL,
     9         kx 				      elfcpp::STV_HIDDEN, 0,
     9         kx 				      false, false);
     9         kx 
     9         kx       // If there are any IRELATIVE relocations, they get GOT entries
     9         kx       // in .got.plt after the jump slot relocations.
     9         kx       this->got_irelative_ = new Output_data_space(4, "** GOT IRELATIVE PLT");
     9         kx       layout->add_output_section_data(".got.plt", elfcpp::SHT_PROGBITS,
     9         kx 				      (elfcpp::SHF_ALLOC
     9         kx 				       | elfcpp::SHF_WRITE),
     9         kx 				      this->got_irelative_,
     9         kx 				      got_plt_order, is_got_plt_relro);
     9         kx 
     9         kx       // If there are any TLSDESC relocations, they get GOT entries in
     9         kx       // .got.plt after the jump slot entries.
     9         kx       this->got_tlsdesc_ = new Output_data_got<32, false>();
     9         kx       layout->add_output_section_data(".got.plt", elfcpp::SHT_PROGBITS,
     9         kx 				      (elfcpp::SHF_ALLOC
     9         kx 				       | elfcpp::SHF_WRITE),
     9         kx 				      this->got_tlsdesc_,
     9         kx 				      got_plt_order, is_got_plt_relro);
     9         kx     }
     9         kx 
     9         kx   return this->got_;
     9         kx }
     9         kx 
     9         kx // Get the dynamic reloc section, creating it if necessary.
     9         kx 
     9         kx Target_i386::Reloc_section*
     9         kx Target_i386::rel_dyn_section(Layout* layout)
     9         kx {
     9         kx   if (this->rel_dyn_ == NULL)
     9         kx     {
     9         kx       gold_assert(layout != NULL);
     9         kx       this->rel_dyn_ = new Reloc_section(parameters->options().combreloc());
     9         kx       layout->add_output_section_data(".rel.dyn", elfcpp::SHT_REL,
     9         kx 				      elfcpp::SHF_ALLOC, this->rel_dyn_,
     9         kx 				      ORDER_DYNAMIC_RELOCS, false);
     9         kx     }
     9         kx   return this->rel_dyn_;
     9         kx }
     9         kx 
     9         kx // Get the section to use for IRELATIVE relocs, creating it if
     9         kx // necessary.  These go in .rel.dyn, but only after all other dynamic
     9         kx // relocations.  They need to follow the other dynamic relocations so
     9         kx // that they can refer to global variables initialized by those
     9         kx // relocs.
     9         kx 
     9         kx Target_i386::Reloc_section*
     9         kx Target_i386::rel_irelative_section(Layout* layout)
     9         kx {
     9         kx   if (this->rel_irelative_ == NULL)
     9         kx     {
     9         kx       // Make sure we have already create the dynamic reloc section.
     9         kx       this->rel_dyn_section(layout);
     9         kx       this->rel_irelative_ = new Reloc_section(false);
     9         kx       layout->add_output_section_data(".rel.dyn", elfcpp::SHT_REL,
     9         kx 				      elfcpp::SHF_ALLOC, this->rel_irelative_,
     9         kx 				      ORDER_DYNAMIC_RELOCS, false);
     9         kx       gold_assert(this->rel_dyn_->output_section()
     9         kx 		  == this->rel_irelative_->output_section());
     9         kx     }
     9         kx   return this->rel_irelative_;
     9         kx }
     9         kx 
     9         kx // Record a target-specific program property from the .note.gnu.property
     9         kx // section.
     9         kx void
     9         kx Target_i386::record_gnu_property(
     9         kx     unsigned int, unsigned int pr_type,
     9         kx     size_t pr_datasz, const unsigned char* pr_data,
     9         kx     const Object* object)
     9         kx {
     9         kx   uint32_t val = 0;
     9         kx 
     9         kx   switch (pr_type)
     9         kx     {
     9         kx     case elfcpp::GNU_PROPERTY_X86_COMPAT_ISA_1_USED:
     9         kx     case elfcpp::GNU_PROPERTY_X86_COMPAT_ISA_1_NEEDED:
     9         kx     case elfcpp::GNU_PROPERTY_X86_COMPAT_2_ISA_1_USED:
     9         kx     case elfcpp::GNU_PROPERTY_X86_COMPAT_2_ISA_1_NEEDED:
     9         kx     case elfcpp::GNU_PROPERTY_X86_ISA_1_USED:
     9         kx     case elfcpp::GNU_PROPERTY_X86_ISA_1_NEEDED:
     9         kx     case elfcpp::GNU_PROPERTY_X86_FEATURE_1_AND:
     9         kx     case elfcpp::GNU_PROPERTY_X86_FEATURE_2_USED:
     9         kx     case elfcpp::GNU_PROPERTY_X86_FEATURE_2_NEEDED:
     9         kx       if (pr_datasz != 4)
     9         kx 	{
     9         kx 	  gold_warning(_("%s: corrupt .note.gnu.property section "
     9         kx 			 "(pr_datasz for property %d is not 4)"),
     9         kx 		       object->name().c_str(), pr_type);
     9         kx 	  return;
     9         kx 	}
     9         kx       val = elfcpp::Swap<32, false>::readval(pr_data);
     9         kx       break;
     9         kx     default:
     9         kx       gold_warning(_("%s: unknown program property type 0x%x "
     9         kx 		     "in .note.gnu.property section"),
     9         kx 		   object->name().c_str(), pr_type);
     9         kx       break;
     9         kx     }
     9         kx 
     9         kx   switch (pr_type)
     9         kx     {
     9         kx     case elfcpp::GNU_PROPERTY_X86_ISA_1_USED:
     9         kx       this->object_isa_1_used_ |= val;
     9         kx       break;
     9         kx     case elfcpp::GNU_PROPERTY_X86_ISA_1_NEEDED:
     9         kx       this->isa_1_needed_ |= val;
     9         kx       break;
     9         kx     case elfcpp::GNU_PROPERTY_X86_FEATURE_1_AND:
     9         kx       // If we see multiple feature props in one object, OR them together.
     9         kx       this->object_feature_1_ |= val;
     9         kx       break;
     9         kx     case elfcpp::GNU_PROPERTY_X86_FEATURE_2_USED:
     9         kx       this->object_feature_2_used_ |= val;
     9         kx       break;
     9         kx     case elfcpp::GNU_PROPERTY_X86_FEATURE_2_NEEDED:
     9         kx       this->feature_2_needed_ |= val;
     9         kx       break;
     9         kx     }
     9         kx }
     9         kx 
     9         kx // Merge the target-specific program properties from the current object.
     9         kx void
     9         kx Target_i386::merge_gnu_properties(const Object*)
     9         kx {
     9         kx   if (this->seen_first_object_)
     9         kx     {
     9         kx       // If any object is missing the ISA_1_USED property, we must omit
     9         kx       // it from the output file.
     9         kx       if (this->object_isa_1_used_ == 0)
     9         kx 	this->isa_1_used_ = 0;
     9         kx       else if (this->isa_1_used_ != 0)
     9         kx 	this->isa_1_used_ |= this->object_isa_1_used_;
     9         kx       this->feature_1_ &= this->object_feature_1_;
     9         kx       // If any object is missing the FEATURE_2_USED property, we must
     9         kx       // omit it from the output file.
     9         kx       if (this->object_feature_2_used_ == 0)
     9         kx 	this->feature_2_used_ = 0;
     9         kx       else if (this->feature_2_used_ != 0)
     9         kx 	this->feature_2_used_ |= this->object_feature_2_used_;
     9         kx     }
     9         kx   else
     9         kx     {
     9         kx       this->isa_1_used_ = this->object_isa_1_used_;
     9         kx       this->feature_1_ = this->object_feature_1_;
     9         kx       this->feature_2_used_ = this->object_feature_2_used_;
     9         kx       this->seen_first_object_ = true;
     9         kx     }
     9         kx   this->object_isa_1_used_ = 0;
     9         kx   this->object_feature_1_ = 0;
     9         kx   this->object_feature_2_used_ = 0;
     9         kx }
     9         kx 
     9         kx static inline void
     9         kx add_property(Layout* layout, unsigned int pr_type, uint32_t val)
     9         kx {
     9         kx   unsigned char buf[4];
     9         kx   elfcpp::Swap<32, false>::writeval(buf, val);
     9         kx   layout->add_gnu_property(elfcpp::NT_GNU_PROPERTY_TYPE_0, pr_type, 4, buf);
     9         kx }
     9         kx 
     9         kx // Finalize the target-specific program properties and add them back to
     9         kx // the layout.
     9         kx void
     9         kx Target_i386::do_finalize_gnu_properties(Layout* layout) const
     9         kx {
     9         kx   if (this->isa_1_used_ != 0)
     9         kx     add_property(layout, elfcpp::GNU_PROPERTY_X86_ISA_1_USED,
     9         kx 		 this->isa_1_used_);
     9         kx   if (this->isa_1_needed_ != 0)
     9         kx     add_property(layout, elfcpp::GNU_PROPERTY_X86_ISA_1_NEEDED,
     9         kx 		 this->isa_1_needed_);
     9         kx   if (this->feature_1_ != 0)
     9         kx     add_property(layout, elfcpp::GNU_PROPERTY_X86_FEATURE_1_AND,
     9         kx 		 this->feature_1_);
     9         kx   if (this->feature_2_used_ != 0)
     9         kx     add_property(layout, elfcpp::GNU_PROPERTY_X86_FEATURE_2_USED,
     9         kx 		 this->feature_2_used_);
     9         kx   if (this->feature_2_needed_ != 0)
     9         kx     add_property(layout, elfcpp::GNU_PROPERTY_X86_FEATURE_2_NEEDED,
     9         kx 		 this->feature_2_needed_);
     9         kx }
     9         kx 
     9         kx // Write the first three reserved words of the .got.plt section.
     9         kx // The remainder of the section is written while writing the PLT
     9         kx // in Output_data_plt_i386::do_write.
     9         kx 
     9         kx void
     9         kx Output_data_got_plt_i386::do_write(Output_file* of)
     9         kx {
     9         kx   // The first entry in the GOT is the address of the .dynamic section
     9         kx   // aka the PT_DYNAMIC segment.  The next two entries are reserved.
     9         kx   // We saved space for them when we created the section in
     9         kx   // Target_i386::got_section.
     9         kx   const off_t got_file_offset = this->offset();
     9         kx   gold_assert(this->data_size() >= 12);
     9         kx   unsigned char* const got_view = of->get_output_view(got_file_offset, 12);
     9         kx   Output_section* dynamic = this->layout_->dynamic_section();
     9         kx   uint32_t dynamic_addr = dynamic == NULL ? 0 : dynamic->address();
     9         kx   elfcpp::Swap<32, false>::writeval(got_view, dynamic_addr);
     9         kx   memset(got_view + 4, 0, 8);
     9         kx   of->write_output_view(got_file_offset, 12, got_view);
     9         kx }
     9         kx 
     9         kx // Create the PLT section.  The ordinary .got section is an argument,
     9         kx // since we need to refer to the start.  We also create our own .got
     9         kx // section just for PLT entries.
     9         kx 
     9         kx Output_data_plt_i386::Output_data_plt_i386(Layout* layout,
     9         kx 					   uint64_t addralign,
     9         kx 					   Output_data_got_plt_i386* got_plt,
     9         kx 					   Output_data_space* got_irelative)
     9         kx   : Output_section_data(addralign),
     9         kx     tls_desc_rel_(NULL), irelative_rel_(NULL), got_plt_(got_plt),
     9         kx     got_irelative_(got_irelative), count_(0), irelative_count_(0),
     9         kx     global_ifuncs_(), local_ifuncs_()
     9         kx {
     9         kx   this->rel_ = new Reloc_section(false);
     9         kx   layout->add_output_section_data(".rel.plt", elfcpp::SHT_REL,
     9         kx 				  elfcpp::SHF_ALLOC, this->rel_,
     9         kx 				  ORDER_DYNAMIC_PLT_RELOCS, false);
     9         kx }
     9         kx 
     9         kx void
     9         kx Output_data_plt_i386::do_adjust_output_section(Output_section* os)
     9         kx {
     9         kx   // UnixWare sets the entsize of .plt to 4, and so does the old GNU
     9         kx   // linker, and so do we.
     9         kx   os->set_entsize(4);
     9         kx }
     9         kx 
     9         kx // Add an entry to the PLT.
     9         kx 
     9         kx void
     9         kx Output_data_plt_i386::add_entry(Symbol_table* symtab, Layout* layout,
     9         kx 				Symbol* gsym)
     9         kx {
     9         kx   gold_assert(!gsym->has_plt_offset());
     9         kx 
     9         kx   // Every PLT entry needs a reloc.
     9         kx   if (gsym->type() == elfcpp::STT_GNU_IFUNC
     9         kx       && gsym->can_use_relative_reloc(false))
     9         kx     {
     9         kx       gsym->set_plt_offset(this->irelative_count_ * this->get_plt_entry_size());
     9         kx       ++this->irelative_count_;
     9         kx       section_offset_type got_offset =
     9         kx 	this->got_irelative_->current_data_size();
     9         kx       this->got_irelative_->set_current_data_size(got_offset + 4);
     9         kx       Reloc_section* rel = this->rel_irelative(symtab, layout);
     9         kx       rel->add_symbolless_global_addend(gsym, elfcpp::R_386_IRELATIVE,
     9         kx 					this->got_irelative_, got_offset);
     9         kx       struct Global_ifunc gi;
     9         kx       gi.sym = gsym;
     9         kx       gi.got_offset = got_offset;
     9         kx       this->global_ifuncs_.push_back(gi);
     9         kx     }
     9         kx   else
     9         kx     {
     9         kx       // When setting the PLT offset we skip the initial reserved PLT
     9         kx       // entry.
     9         kx       gsym->set_plt_offset((this->count_ + 1) * this->get_plt_entry_size());
     9         kx 
     9         kx       ++this->count_;
     9         kx 
     9         kx       section_offset_type got_offset = this->got_plt_->current_data_size();
     9         kx 
     9         kx       // Every PLT entry needs a GOT entry which points back to the
     9         kx       // PLT entry (this will be changed by the dynamic linker,
     9         kx       // normally lazily when the function is called).
     9         kx       this->got_plt_->set_current_data_size(got_offset + 4);
     9         kx 
     9         kx       gsym->set_needs_dynsym_entry();
     9         kx       this->rel_->add_global(gsym, elfcpp::R_386_JUMP_SLOT, this->got_plt_,
     9         kx 			     got_offset);
     9         kx     }
     9         kx 
     9         kx   // Note that we don't need to save the symbol.  The contents of the
     9         kx   // PLT are independent of which symbols are used.  The symbols only
     9         kx   // appear in the relocations.
     9         kx }
     9         kx 
     9         kx // Add an entry to the PLT for a local STT_GNU_IFUNC symbol.  Return
     9         kx // the PLT offset.
     9         kx 
     9         kx unsigned int
     9         kx Output_data_plt_i386::add_local_ifunc_entry(
     9         kx     Symbol_table* symtab,
     9         kx     Layout* layout,
     9         kx     Sized_relobj_file<32, false>* relobj,
     9         kx     unsigned int local_sym_index)
     9         kx {
     9         kx   unsigned int plt_offset = this->irelative_count_ * this->get_plt_entry_size();
     9         kx   ++this->irelative_count_;
     9         kx 
     9         kx   section_offset_type got_offset = this->got_irelative_->current_data_size();
     9         kx 
     9         kx   // Every PLT entry needs a GOT entry which points back to the PLT
     9         kx   // entry.
     9         kx   this->got_irelative_->set_current_data_size(got_offset + 4);
     9         kx 
     9         kx   // Every PLT entry needs a reloc.
     9         kx   Reloc_section* rel = this->rel_irelative(symtab, layout);
     9         kx   rel->add_symbolless_local_addend(relobj, local_sym_index,
     9         kx 				   elfcpp::R_386_IRELATIVE,
     9         kx 				   this->got_irelative_, got_offset);
     9         kx 
     9         kx   struct Local_ifunc li;
     9         kx   li.object = relobj;
     9         kx   li.local_sym_index = local_sym_index;
     9         kx   li.got_offset = got_offset;
     9         kx   this->local_ifuncs_.push_back(li);
     9         kx 
     9         kx   return plt_offset;
     9         kx }
     9         kx 
     9         kx // Return where the TLS_DESC relocations should go, creating it if
     9         kx // necessary. These follow the JUMP_SLOT relocations.
     9         kx 
     9         kx Output_data_plt_i386::Reloc_section*
     9         kx Output_data_plt_i386::rel_tls_desc(Layout* layout)
     9         kx {
     9         kx   if (this->tls_desc_rel_ == NULL)
     9         kx     {
     9         kx       this->tls_desc_rel_ = new Reloc_section(false);
     9         kx       layout->add_output_section_data(".rel.plt", elfcpp::SHT_REL,
     9         kx 				      elfcpp::SHF_ALLOC, this->tls_desc_rel_,
     9         kx 				      ORDER_DYNAMIC_PLT_RELOCS, false);
     9         kx       gold_assert(this->tls_desc_rel_->output_section()
     9         kx 		  == this->rel_->output_section());
     9         kx     }
     9         kx   return this->tls_desc_rel_;
     9         kx }
     9         kx 
     9         kx // Return where the IRELATIVE relocations should go in the PLT.  These
     9         kx // follow the JUMP_SLOT and TLS_DESC relocations.
     9         kx 
     9         kx Output_data_plt_i386::Reloc_section*
     9         kx Output_data_plt_i386::rel_irelative(Symbol_table* symtab, Layout* layout)
     9         kx {
     9         kx   if (this->irelative_rel_ == NULL)
     9         kx     {
     9         kx       // Make sure we have a place for the TLS_DESC relocations, in
     9         kx       // case we see any later on.
     9         kx       this->rel_tls_desc(layout);
     9         kx       this->irelative_rel_ = new Reloc_section(false);
     9         kx       layout->add_output_section_data(".rel.plt", elfcpp::SHT_REL,
     9         kx 				      elfcpp::SHF_ALLOC, this->irelative_rel_,
     9         kx 				      ORDER_DYNAMIC_PLT_RELOCS, false);
     9         kx       gold_assert(this->irelative_rel_->output_section()
     9         kx 		  == this->rel_->output_section());
     9         kx 
     9         kx       if (parameters->doing_static_link())
     9         kx 	{
     9         kx 	  // A statically linked executable will only have a .rel.plt
     9         kx 	  // section to hold R_386_IRELATIVE relocs for STT_GNU_IFUNC
     9         kx 	  // symbols.  The library will use these symbols to locate
     9         kx 	  // the IRELATIVE relocs at program startup time.
     9         kx 	  symtab->define_in_output_data("__rel_iplt_start", NULL,
     9         kx 					Symbol_table::PREDEFINED,
     9         kx 					this->irelative_rel_, 0, 0,
     9         kx 					elfcpp::STT_NOTYPE, elfcpp::STB_GLOBAL,
     9         kx 					elfcpp::STV_HIDDEN, 0, false, true);
     9         kx 	  symtab->define_in_output_data("__rel_iplt_end", NULL,
     9         kx 					Symbol_table::PREDEFINED,
     9         kx 					this->irelative_rel_, 0, 0,
     9         kx 					elfcpp::STT_NOTYPE, elfcpp::STB_GLOBAL,
     9         kx 					elfcpp::STV_HIDDEN, 0, true, true);
     9         kx 	}
     9         kx     }
     9         kx   return this->irelative_rel_;
     9         kx }
     9         kx 
     9         kx // Return the PLT address to use for a global symbol.
     9         kx 
     9         kx uint64_t
     9         kx Output_data_plt_i386::address_for_global(const Symbol* gsym)
     9         kx {
     9         kx   uint64_t offset = 0;
     9         kx   if (gsym->type() == elfcpp::STT_GNU_IFUNC
     9         kx       && gsym->can_use_relative_reloc(false))
     9         kx     offset = (this->count_ + 1) * this->get_plt_entry_size();
     9         kx   return this->address() + offset + gsym->plt_offset();
     9         kx }
     9         kx 
     9         kx // Return the PLT address to use for a local symbol.  These are always
     9         kx // IRELATIVE relocs.
     9         kx 
     9         kx uint64_t
     9         kx Output_data_plt_i386::address_for_local(const Relobj* object,
     9         kx 					unsigned int r_sym)
     9         kx {
     9         kx   return (this->address()
     9         kx 	  + (this->count_ + 1) * this->get_plt_entry_size()
     9         kx 	  + object->local_plt_offset(r_sym));
     9         kx }
     9         kx 
     9         kx // The first entry in the PLT for an executable.
     9         kx 
     9         kx const unsigned char Output_data_plt_i386_exec::first_plt_entry[plt_entry_size] =
     9         kx {
     9         kx   0xff, 0x35,	// pushl contents of memory address
     9         kx   0, 0, 0, 0,	// replaced with address of .got + 4
     9         kx   0xff, 0x25,	// jmp indirect
     9         kx   0, 0, 0, 0,	// replaced with address of .got + 8
     9         kx   0, 0, 0, 0	// unused
     9         kx };
     9         kx 
     9         kx void
     9         kx Output_data_plt_i386_exec::do_fill_first_plt_entry(
     9         kx     unsigned char* pov,
     9         kx     elfcpp::Elf_types<32>::Elf_Addr got_address)
     9         kx {
     9         kx   memcpy(pov, first_plt_entry, plt_entry_size);
     9         kx   elfcpp::Swap_unaligned<32, false>::writeval(pov + 2, got_address + 4);
     9         kx   elfcpp::Swap<32, false>::writeval(pov + 8, got_address + 8);
     9         kx }
     9         kx 
     9         kx // The first entry in the PLT for a shared object.
     9         kx 
     9         kx const unsigned char Output_data_plt_i386_dyn::first_plt_entry[plt_entry_size] =
     9         kx {
     9         kx   0xff, 0xb3, 4, 0, 0, 0,	// pushl 4(%ebx)
     9         kx   0xff, 0xa3, 8, 0, 0, 0,	// jmp *8(%ebx)
     9         kx   0, 0, 0, 0			// unused
     9         kx };
     9         kx 
     9         kx void
     9         kx Output_data_plt_i386_dyn::do_fill_first_plt_entry(
     9         kx     unsigned char* pov,
     9         kx     elfcpp::Elf_types<32>::Elf_Addr)
     9         kx {
     9         kx   memcpy(pov, first_plt_entry, plt_entry_size);
     9         kx }
     9         kx 
     9         kx // Subsequent entries in the PLT for an executable.
     9         kx 
     9         kx const unsigned char Output_data_plt_i386_exec::plt_entry[plt_entry_size] =
     9         kx {
     9         kx   0xff, 0x25,	// jmp indirect
     9         kx   0, 0, 0, 0,	// replaced with address of symbol in .got
     9         kx   0x68,		// pushl immediate
     9         kx   0, 0, 0, 0,	// replaced with offset into relocation table
     9         kx   0xe9,		// jmp relative
     9         kx   0, 0, 0, 0	// replaced with offset to start of .plt
     9         kx };
     9         kx 
     9         kx unsigned int
     9         kx Output_data_plt_i386_exec::do_fill_plt_entry(
     9         kx     unsigned char* pov,
     9         kx     elfcpp::Elf_types<32>::Elf_Addr got_address,
     9         kx     unsigned int got_offset,
     9         kx     unsigned int plt_offset,
     9         kx     unsigned int plt_rel_offset)
     9         kx {
     9         kx   memcpy(pov, plt_entry, plt_entry_size);
     9         kx   elfcpp::Swap_unaligned<32, false>::writeval(pov + 2,
     9         kx 					      got_address + got_offset);
     9         kx   elfcpp::Swap_unaligned<32, false>::writeval(pov + 7, plt_rel_offset);
     9         kx   elfcpp::Swap<32, false>::writeval(pov + 12, - (plt_offset + 12 + 4));
     9         kx   return 6;
     9         kx }
     9         kx 
     9         kx // Subsequent entries in the PLT for a shared object.
     9         kx 
     9         kx const unsigned char Output_data_plt_i386_dyn::plt_entry[plt_entry_size] =
     9         kx {
     9         kx   0xff, 0xa3,	// jmp *offset(%ebx)
     9         kx   0, 0, 0, 0,	// replaced with offset of symbol in .got
     9         kx   0x68,		// pushl immediate
     9         kx   0, 0, 0, 0,	// replaced with offset into relocation table
     9         kx   0xe9,		// jmp relative
     9         kx   0, 0, 0, 0	// replaced with offset to start of .plt
     9         kx };
     9         kx 
     9         kx unsigned int
     9         kx Output_data_plt_i386_dyn::do_fill_plt_entry(unsigned char* pov,
     9         kx 					    elfcpp::Elf_types<32>::Elf_Addr,
     9         kx 					    unsigned int got_offset,
     9         kx 					    unsigned int plt_offset,
     9         kx 					    unsigned int plt_rel_offset)
     9         kx {
     9         kx   memcpy(pov, plt_entry, plt_entry_size);
     9         kx   elfcpp::Swap_unaligned<32, false>::writeval(pov + 2, got_offset);
     9         kx   elfcpp::Swap_unaligned<32, false>::writeval(pov + 7, plt_rel_offset);
     9         kx   elfcpp::Swap<32, false>::writeval(pov + 12, - (plt_offset + 12 + 4));
     9         kx   return 6;
     9         kx }
     9         kx 
     9         kx // The .eh_frame unwind information for the PLT.
     9         kx 
     9         kx const unsigned char
     9         kx Output_data_plt_i386::plt_eh_frame_cie[plt_eh_frame_cie_size] =
     9         kx {
     9         kx   1,				// CIE version.
     9         kx   'z',				// Augmentation: augmentation size included.
     9         kx   'R',				// Augmentation: FDE encoding included.
     9         kx   '\0',				// End of augmentation string.
     9         kx   1,				// Code alignment factor.
     9         kx   0x7c,				// Data alignment factor.
     9         kx   8,				// Return address column.
     9         kx   1,				// Augmentation size.
     9         kx   (elfcpp::DW_EH_PE_pcrel	// FDE encoding.
     9         kx    | elfcpp::DW_EH_PE_sdata4),
     9         kx   elfcpp::DW_CFA_def_cfa, 4, 4,	// DW_CFA_def_cfa: r4 (esp) ofs 4.
     9         kx   elfcpp::DW_CFA_offset + 8, 1,	// DW_CFA_offset: r8 (eip) at cfa-4.
     9         kx   elfcpp::DW_CFA_nop,		// Align to 16 bytes.
     9         kx   elfcpp::DW_CFA_nop
     9         kx };
     9         kx 
     9         kx const unsigned char
     9         kx Output_data_plt_i386_standard::plt_eh_frame_fde[plt_eh_frame_fde_size] =
     9         kx {
     9         kx   0, 0, 0, 0,				// Replaced with offset to .plt.
     9         kx   0, 0, 0, 0,				// Replaced with size of .plt.
     9         kx   0,					// Augmentation size.
     9         kx   elfcpp::DW_CFA_def_cfa_offset, 8,	// DW_CFA_def_cfa_offset: 8.
     9         kx   elfcpp::DW_CFA_advance_loc + 6,	// Advance 6 to __PLT__ + 6.
     9         kx   elfcpp::DW_CFA_def_cfa_offset, 12,	// DW_CFA_def_cfa_offset: 12.
     9         kx   elfcpp::DW_CFA_advance_loc + 10,	// Advance 10 to __PLT__ + 16.
     9         kx   elfcpp::DW_CFA_def_cfa_expression,	// DW_CFA_def_cfa_expression.
     9         kx   11,					// Block length.
     9         kx   elfcpp::DW_OP_breg4, 4,		// Push %esp + 4.
     9         kx   elfcpp::DW_OP_breg8, 0,		// Push %eip.
     9         kx   elfcpp::DW_OP_lit15,			// Push 0xf.
     9         kx   elfcpp::DW_OP_and,			// & (%eip & 0xf).
     9         kx   elfcpp::DW_OP_lit11,			// Push 0xb.
     9         kx   elfcpp::DW_OP_ge,			// >= ((%eip & 0xf) >= 0xb)
     9         kx   elfcpp::DW_OP_lit2,			// Push 2.
     9         kx   elfcpp::DW_OP_shl,			// << (((%eip & 0xf) >= 0xb) << 2)
     9         kx   elfcpp::DW_OP_plus,			// + ((((%eip&0xf)>=0xb)<<2)+%esp+4
     9         kx   elfcpp::DW_CFA_nop,			// Align to 32 bytes.
     9         kx   elfcpp::DW_CFA_nop,
     9         kx   elfcpp::DW_CFA_nop,
     9         kx   elfcpp::DW_CFA_nop
     9         kx };
     9         kx 
     9         kx // Write out the PLT.  This uses the hand-coded instructions above,
     9         kx // and adjusts them as needed.  This is all specified by the i386 ELF
     9         kx // Processor Supplement.
     9         kx 
     9         kx void
     9         kx Output_data_plt_i386::do_write(Output_file* of)
     9         kx {
     9         kx   const off_t offset = this->offset();
     9         kx   const section_size_type oview_size =
     9         kx     convert_to_section_size_type(this->data_size());
     9         kx   unsigned char* const oview = of->get_output_view(offset, oview_size);
     9         kx 
     9         kx   const off_t got_file_offset = this->got_plt_->offset();
     9         kx   gold_assert(parameters->incremental_update()
     9         kx 	      || (got_file_offset + this->got_plt_->data_size()
     9         kx 		  == this->got_irelative_->offset()));
     9         kx   const section_size_type got_size =
     9         kx     convert_to_section_size_type(this->got_plt_->data_size()
     9         kx 				 + this->got_irelative_->data_size());
     9         kx 
     9         kx   unsigned char* const got_view = of->get_output_view(got_file_offset,
     9         kx 						      got_size);
     9         kx 
     9         kx   unsigned char* pov = oview;
     9         kx 
     9         kx   elfcpp::Elf_types<32>::Elf_Addr plt_address = this->address();
     9         kx   elfcpp::Elf_types<32>::Elf_Addr got_address = this->got_plt_->address();
     9         kx 
     9         kx   this->fill_first_plt_entry(pov, got_address);
     9         kx   pov += this->get_plt_entry_size();
     9         kx 
     9         kx   // The first three entries in the GOT are reserved, and are written
     9         kx   // by Output_data_got_plt_i386::do_write.
     9         kx   unsigned char* got_pov = got_view + 12;
     9         kx 
     9         kx   const int rel_size = elfcpp::Elf_sizes<32>::rel_size;
     9         kx 
     9         kx   unsigned int plt_offset = this->get_plt_entry_size();
     9         kx   unsigned int plt_rel_offset = 0;
     9         kx   unsigned int got_offset = 12;
     9         kx   const unsigned int count = this->count_ + this->irelative_count_;
     9         kx   for (unsigned int i = 0;
     9         kx        i < count;
     9         kx        ++i,
     9         kx 	 pov += this->get_plt_entry_size(),
     9         kx 	 got_pov += 4,
     9         kx 	 plt_offset += this->get_plt_entry_size(),
     9         kx 	 plt_rel_offset += rel_size,
     9         kx 	 got_offset += 4)
     9         kx     {
     9         kx       // Set and adjust the PLT entry itself.
     9         kx       unsigned int lazy_offset = this->fill_plt_entry(pov,
     9         kx 						      got_address,
     9         kx 						      got_offset,
     9         kx 						      plt_offset,
     9         kx 						      plt_rel_offset);
     9         kx 
     9         kx       // Set the entry in the GOT.
     9         kx       elfcpp::Swap<32, false>::writeval(got_pov,
     9         kx 					plt_address + plt_offset + lazy_offset);
     9         kx     }
     9         kx 
     9         kx   // If any STT_GNU_IFUNC symbols have PLT entries, we need to change
     9         kx   // the GOT to point to the actual symbol value, rather than point to
     9         kx   // the PLT entry.  That will let the dynamic linker call the right
     9         kx   // function when resolving IRELATIVE relocations.
     9         kx   unsigned char* got_irelative_view = got_view + this->got_plt_->data_size();
     9         kx   for (std::vector<Global_ifunc>::const_iterator p =
     9         kx 	 this->global_ifuncs_.begin();
     9         kx        p != this->global_ifuncs_.end();
     9         kx        ++p)
     9         kx     {
     9         kx       const Sized_symbol<32>* ssym =
     9         kx 	static_cast<const Sized_symbol<32>*>(p->sym);
     9         kx       elfcpp::Swap<32, false>::writeval(got_irelative_view + p->got_offset,
     9         kx 					ssym->value());
     9         kx     }
     9         kx 
     9         kx   for (std::vector<Local_ifunc>::const_iterator p =
     9         kx 	 this->local_ifuncs_.begin();
     9         kx        p != this->local_ifuncs_.end();
     9         kx        ++p)
     9         kx     {
     9         kx       const Symbol_value<32>* psymval =
     9         kx 	p->object->local_symbol(p->local_sym_index);
     9         kx       elfcpp::Swap<32, false>::writeval(got_irelative_view + p->got_offset,
     9         kx 					psymval->value(p->object, 0));
     9         kx     }
     9         kx 
     9         kx   gold_assert(static_cast<section_size_type>(pov - oview) == oview_size);
     9         kx   gold_assert(static_cast<section_size_type>(got_pov - got_view) == got_size);
     9         kx 
     9         kx   of->write_output_view(offset, oview_size, oview);
     9         kx   of->write_output_view(got_file_offset, got_size, got_view);
     9         kx }
     9         kx 
     9         kx // Create the PLT section.
     9         kx 
     9         kx void
     9         kx Target_i386::make_plt_section(Symbol_table* symtab, Layout* layout)
     9         kx {
     9         kx   if (this->plt_ == NULL)
     9         kx     {
     9         kx       // Create the GOT sections first.
     9         kx       this->got_section(symtab, layout);
     9         kx 
     9         kx       const bool dyn = parameters->options().output_is_position_independent();
     9         kx       this->plt_ = this->make_data_plt(layout,
     9         kx 				       this->got_plt_,
     9         kx 				       this->got_irelative_,
     9         kx 				       dyn);
     9         kx 
     9         kx       // Add unwind information if requested.
     9         kx       if (parameters->options().ld_generated_unwind_info())
     9         kx 	this->plt_->add_eh_frame(layout);
     9         kx 
     9         kx       layout->add_output_section_data(".plt", elfcpp::SHT_PROGBITS,
     9         kx 				      (elfcpp::SHF_ALLOC
     9         kx 				       | elfcpp::SHF_EXECINSTR),
     9         kx 				      this->plt_, ORDER_PLT, false);
     9         kx 
     9         kx       // Make the sh_info field of .rel.plt point to .plt.
     9         kx       Output_section* rel_plt_os = this->plt_->rel_plt()->output_section();
     9         kx       rel_plt_os->set_info_section(this->plt_->output_section());
     9         kx     }
     9         kx }
     9         kx 
     9         kx // Create a PLT entry for a global symbol.
     9         kx 
     9         kx void
     9         kx Target_i386::make_plt_entry(Symbol_table* symtab, Layout* layout, Symbol* gsym)
     9         kx {
     9         kx   if (gsym->has_plt_offset())
     9         kx     return;
     9         kx   if (this->plt_ == NULL)
     9         kx     this->make_plt_section(symtab, layout);
     9         kx   this->plt_->add_entry(symtab, layout, gsym);
     9         kx }
     9         kx 
     9         kx // Make a PLT entry for a local STT_GNU_IFUNC symbol.
     9         kx 
     9         kx void
     9         kx Target_i386::make_local_ifunc_plt_entry(Symbol_table* symtab, Layout* layout,
     9         kx 					Sized_relobj_file<32, false>* relobj,
     9         kx 					unsigned int local_sym_index)
     9         kx {
     9         kx   if (relobj->local_has_plt_offset(local_sym_index))
     9         kx     return;
     9         kx   if (this->plt_ == NULL)
     9         kx     this->make_plt_section(symtab, layout);
     9         kx   unsigned int plt_offset = this->plt_->add_local_ifunc_entry(symtab, layout,
     9         kx 							      relobj,
     9         kx 							      local_sym_index);
     9         kx   relobj->set_local_plt_offset(local_sym_index, plt_offset);
     9         kx }
     9         kx 
     9         kx // Return the number of entries in the PLT.
     9         kx 
     9         kx unsigned int
     9         kx Target_i386::plt_entry_count() const
     9         kx {
     9         kx   if (this->plt_ == NULL)
     9         kx     return 0;
     9         kx   return this->plt_->entry_count();
     9         kx }
     9         kx 
     9         kx // Return the offset of the first non-reserved PLT entry.
     9         kx 
     9         kx unsigned int
     9         kx Target_i386::first_plt_entry_offset() const
     9         kx {
     9         kx   if (this->plt_ == NULL)
     9         kx     return 0;
     9         kx   return this->plt_->first_plt_entry_offset();
     9         kx }
     9         kx 
     9         kx // Return the size of each PLT entry.
     9         kx 
     9         kx unsigned int
     9         kx Target_i386::plt_entry_size() const
     9         kx {
     9         kx   if (this->plt_ == NULL)
     9         kx     return 0;
     9         kx   return this->plt_->get_plt_entry_size();
     9         kx }
     9         kx 
     9         kx // Get the section to use for TLS_DESC relocations.
     9         kx 
     9         kx Target_i386::Reloc_section*
     9         kx Target_i386::rel_tls_desc_section(Layout* layout) const
     9         kx {
     9         kx   return this->plt_section()->rel_tls_desc(layout);
     9         kx }
     9         kx 
     9         kx // Define the _TLS_MODULE_BASE_ symbol in the TLS segment.
     9         kx 
     9         kx void
     9         kx Target_i386::define_tls_base_symbol(Symbol_table* symtab, Layout* layout)
     9         kx {
     9         kx   if (this->tls_base_symbol_defined_)
     9         kx     return;
     9         kx 
     9         kx   Output_segment* tls_segment = layout->tls_segment();
     9         kx   if (tls_segment != NULL)
     9         kx     {
     9         kx       bool is_exec = parameters->options().output_is_executable();
     9         kx       symtab->define_in_output_segment("_TLS_MODULE_BASE_", NULL,
     9         kx 				       Symbol_table::PREDEFINED,
     9         kx 				       tls_segment, 0, 0,
     9         kx 				       elfcpp::STT_TLS,
     9         kx 				       elfcpp::STB_LOCAL,
     9         kx 				       elfcpp::STV_HIDDEN, 0,
     9         kx 				       (is_exec
     9         kx 					? Symbol::SEGMENT_END
     9         kx 					: Symbol::SEGMENT_START),
     9         kx 				       true);
     9         kx     }
     9         kx   this->tls_base_symbol_defined_ = true;
     9         kx }
     9         kx 
     9         kx // Create a GOT entry for the TLS module index.
     9         kx 
     9         kx unsigned int
     9         kx Target_i386::got_mod_index_entry(Symbol_table* symtab, Layout* layout,
     9         kx 				 Sized_relobj_file<32, false>* object)
     9         kx {
     9         kx   if (this->got_mod_index_offset_ == -1U)
     9         kx     {
     9         kx       gold_assert(symtab != NULL && layout != NULL && object != NULL);
     9         kx       Reloc_section* rel_dyn = this->rel_dyn_section(layout);
     9         kx       Output_data_got<32, false>* got = this->got_section(symtab, layout);
     9         kx       unsigned int got_offset = got->add_constant(0);
     9         kx       rel_dyn->add_local(object, 0, elfcpp::R_386_TLS_DTPMOD32, got,
     9         kx 			 got_offset);
     9         kx       got->add_constant(0);
     9         kx       this->got_mod_index_offset_ = got_offset;
     9         kx     }
     9         kx   return this->got_mod_index_offset_;
     9         kx }
     9         kx 
     9         kx // Optimize the TLS relocation type based on what we know about the
     9         kx // symbol.  IS_FINAL is true if the final address of this symbol is
     9         kx // known at link time.
     9         kx 
     9         kx tls::Tls_optimization
     9         kx Target_i386::optimize_tls_reloc(bool is_final, int r_type)
     9         kx {
     9         kx   // If we are generating a shared library, then we can't do anything
     9         kx   // in the linker.
     9         kx   if (parameters->options().shared())
     9         kx     return tls::TLSOPT_NONE;
     9         kx 
     9         kx   switch (r_type)
     9         kx     {
     9         kx     case elfcpp::R_386_TLS_GD:
     9         kx     case elfcpp::R_386_TLS_GOTDESC:
     9         kx     case elfcpp::R_386_TLS_DESC_CALL:
     9         kx       // These are General-Dynamic which permits fully general TLS
     9         kx       // access.  Since we know that we are generating an executable,
     9         kx       // we can convert this to Initial-Exec.  If we also know that
     9         kx       // this is a local symbol, we can further switch to Local-Exec.
     9         kx       if (is_final)
     9         kx 	return tls::TLSOPT_TO_LE;
     9         kx       return tls::TLSOPT_TO_IE;
     9         kx 
     9         kx     case elfcpp::R_386_TLS_LDM:
     9         kx       // This is Local-Dynamic, which refers to a local symbol in the
     9         kx       // dynamic TLS block.  Since we know that we generating an
     9         kx       // executable, we can switch to Local-Exec.
     9         kx       return tls::TLSOPT_TO_LE;
     9         kx 
     9         kx     case elfcpp::R_386_TLS_LDO_32:
     9         kx       // Another type of Local-Dynamic relocation.
     9         kx       return tls::TLSOPT_TO_LE;
     9         kx 
     9         kx     case elfcpp::R_386_TLS_IE:
     9         kx     case elfcpp::R_386_TLS_GOTIE:
     9         kx     case elfcpp::R_386_TLS_IE_32:
     9         kx       // These are Initial-Exec relocs which get the thread offset
     9         kx       // from the GOT.  If we know that we are linking against the
     9         kx       // local symbol, we can switch to Local-Exec, which links the
     9         kx       // thread offset into the instruction.
     9         kx       if (is_final)
     9         kx 	return tls::TLSOPT_TO_LE;
     9         kx       return tls::TLSOPT_NONE;
     9         kx 
     9         kx     case elfcpp::R_386_TLS_LE:
     9         kx     case elfcpp::R_386_TLS_LE_32:
     9         kx       // When we already have Local-Exec, there is nothing further we
     9         kx       // can do.
     9         kx       return tls::TLSOPT_NONE;
     9         kx 
     9         kx     default:
     9         kx       gold_unreachable();
     9         kx     }
     9         kx }
     9         kx 
     9         kx // Get the Reference_flags for a particular relocation.
     9         kx 
     9         kx int
     9         kx Target_i386::Scan::get_reference_flags(unsigned int r_type)
     9         kx {
     9         kx   switch (r_type)
     9         kx     {
     9         kx     case elfcpp::R_386_NONE:
     9         kx     case elfcpp::R_386_GNU_VTINHERIT:
     9         kx     case elfcpp::R_386_GNU_VTENTRY:
     9         kx     case elfcpp::R_386_GOTPC:
     9         kx       // No symbol reference.
     9         kx       return 0;
     9         kx 
     9         kx     case elfcpp::R_386_32:
     9         kx     case elfcpp::R_386_16:
     9         kx     case elfcpp::R_386_8:
     9         kx       return Symbol::ABSOLUTE_REF;
     9         kx 
     9         kx     case elfcpp::R_386_PC32:
     9         kx     case elfcpp::R_386_PC16:
     9         kx     case elfcpp::R_386_PC8:
     9         kx     case elfcpp::R_386_GOTOFF:
     9         kx       return Symbol::RELATIVE_REF;
     9         kx 
     9         kx     case elfcpp::R_386_PLT32:
     9         kx       return Symbol::FUNCTION_CALL | Symbol::RELATIVE_REF;
     9         kx 
     9         kx     case elfcpp::R_386_GOT32:
     9         kx     case elfcpp::R_386_GOT32X:
     9         kx       // Absolute in GOT.
     9         kx       return Symbol::ABSOLUTE_REF;
     9         kx 
     9         kx     case elfcpp::R_386_TLS_GD:            // Global-dynamic
     9         kx     case elfcpp::R_386_TLS_GOTDESC:       // Global-dynamic (from ~oliva url)
     9         kx     case elfcpp::R_386_TLS_DESC_CALL:
     9         kx     case elfcpp::R_386_TLS_LDM:           // Local-dynamic
     9         kx     case elfcpp::R_386_TLS_LDO_32:        // Alternate local-dynamic
     9         kx     case elfcpp::R_386_TLS_IE:            // Initial-exec
     9         kx     case elfcpp::R_386_TLS_IE_32:
     9         kx     case elfcpp::R_386_TLS_GOTIE:
     9         kx     case elfcpp::R_386_TLS_LE:            // Local-exec
     9         kx     case elfcpp::R_386_TLS_LE_32:
     9         kx       return Symbol::TLS_REF;
     9         kx 
     9         kx     case elfcpp::R_386_COPY:
     9         kx     case elfcpp::R_386_GLOB_DAT:
     9         kx     case elfcpp::R_386_JUMP_SLOT:
     9         kx     case elfcpp::R_386_RELATIVE:
     9         kx     case elfcpp::R_386_IRELATIVE:
     9         kx     case elfcpp::R_386_TLS_TPOFF:
     9         kx     case elfcpp::R_386_TLS_DTPMOD32:
     9         kx     case elfcpp::R_386_TLS_DTPOFF32:
     9         kx     case elfcpp::R_386_TLS_TPOFF32:
     9         kx     case elfcpp::R_386_TLS_DESC:
     9         kx     case elfcpp::R_386_32PLT:
     9         kx     case elfcpp::R_386_TLS_GD_32:
     9         kx     case elfcpp::R_386_TLS_GD_PUSH:
     9         kx     case elfcpp::R_386_TLS_GD_CALL:
     9         kx     case elfcpp::R_386_TLS_GD_POP:
     9         kx     case elfcpp::R_386_TLS_LDM_32:
     9         kx     case elfcpp::R_386_TLS_LDM_PUSH:
     9         kx     case elfcpp::R_386_TLS_LDM_CALL:
     9         kx     case elfcpp::R_386_TLS_LDM_POP:
     9         kx     case elfcpp::R_386_USED_BY_INTEL_200:
     9         kx     default:
     9         kx       // Not expected.  We will give an error later.
     9         kx       return 0;
     9         kx     }
     9         kx }
     9         kx 
     9         kx // Report an unsupported relocation against a local symbol.
     9         kx 
     9         kx void
     9         kx Target_i386::Scan::unsupported_reloc_local(Sized_relobj_file<32, false>* object,
     9         kx 					   unsigned int r_type)
     9         kx {
     9         kx   gold_error(_("%s: unsupported reloc %u against local symbol"),
     9         kx 	     object->name().c_str(), r_type);
     9         kx }
     9         kx 
     9         kx // Return whether we need to make a PLT entry for a relocation of a
     9         kx // given type against a STT_GNU_IFUNC symbol.
     9         kx 
     9         kx bool
     9         kx Target_i386::Scan::reloc_needs_plt_for_ifunc(
     9         kx     Sized_relobj_file<32, false>* object,
     9         kx     unsigned int r_type)
     9         kx {
     9         kx   int flags = Scan::get_reference_flags(r_type);
     9         kx   if (flags & Symbol::TLS_REF)
     9         kx     gold_error(_("%s: unsupported TLS reloc %u for IFUNC symbol"),
     9         kx 	       object->name().c_str(), r_type);
     9         kx   return flags != 0;
     9         kx }
     9         kx 
     9         kx // Scan a relocation for a local symbol.
     9         kx 
     9         kx inline void
     9         kx Target_i386::Scan::local(Symbol_table* symtab,
     9         kx 			 Layout* layout,
     9         kx 			 Target_i386* target,
     9         kx 			 Sized_relobj_file<32, false>* object,
     9         kx 			 unsigned int data_shndx,
     9         kx 			 Output_section* output_section,
     9         kx 			 const elfcpp::Rel<32, false>& reloc,
     9         kx 			 unsigned int r_type,
     9         kx 			 const elfcpp::Sym<32, false>& lsym,
     9         kx 			 bool is_discarded)
     9         kx {
     9         kx   if (is_discarded)
     9         kx     return;
     9         kx 
     9         kx   // A local STT_GNU_IFUNC symbol may require a PLT entry.
     9         kx   if (lsym.get_st_type() == elfcpp::STT_GNU_IFUNC
     9         kx       && this->reloc_needs_plt_for_ifunc(object, r_type))
     9         kx     {
     9         kx       unsigned int r_sym = elfcpp::elf_r_sym<32>(reloc.get_r_info());
     9         kx       target->make_local_ifunc_plt_entry(symtab, layout, object, r_sym);
     9         kx     }
     9         kx 
     9         kx   switch (r_type)
     9         kx     {
     9         kx     case elfcpp::R_386_NONE:
     9         kx     case elfcpp::R_386_GNU_VTINHERIT:
     9         kx     case elfcpp::R_386_GNU_VTENTRY:
     9         kx       break;
     9         kx 
     9         kx     case elfcpp::R_386_32:
     9         kx       // If building a shared library (or a position-independent
     9         kx       // executable), we need to create a dynamic relocation for
     9         kx       // this location. The relocation applied at link time will
     9         kx       // apply the link-time value, so we flag the location with
     9         kx       // an R_386_RELATIVE relocation so the dynamic loader can
     9         kx       // relocate it easily.
     9         kx       if (parameters->options().output_is_position_independent())
     9         kx 	{
     9         kx 	  Reloc_section* rel_dyn = target->rel_dyn_section(layout);
     9         kx 	  unsigned int r_sym = elfcpp::elf_r_sym<32>(reloc.get_r_info());
     9         kx 	  rel_dyn->add_local_relative(object, r_sym, elfcpp::R_386_RELATIVE,
     9         kx 				      output_section, data_shndx,
     9         kx 				      reloc.get_r_offset());
     9         kx 	}
     9         kx       break;
     9         kx 
     9         kx     case elfcpp::R_386_16:
     9         kx     case elfcpp::R_386_8:
     9         kx       // If building a shared library (or a position-independent
     9         kx       // executable), we need to create a dynamic relocation for
     9         kx       // this location. Because the addend needs to remain in the
     9         kx       // data section, we need to be careful not to apply this
     9         kx       // relocation statically.
     9         kx       if (parameters->options().output_is_position_independent())
     9         kx 	{
     9         kx 	  Reloc_section* rel_dyn = target->rel_dyn_section(layout);
     9         kx 	  unsigned int r_sym = elfcpp::elf_r_sym<32>(reloc.get_r_info());
     9         kx 	  if (lsym.get_st_type() != elfcpp::STT_SECTION)
     9         kx 	    rel_dyn->add_local(object, r_sym, r_type, output_section,
     9         kx 			       data_shndx, reloc.get_r_offset());
     9         kx 	  else
     9         kx 	    {
     9         kx 	      gold_assert(lsym.get_st_value() == 0);
     9         kx 	      unsigned int shndx = lsym.get_st_shndx();
     9         kx 	      bool is_ordinary;
     9         kx 	      shndx = object->adjust_sym_shndx(r_sym, shndx,
     9         kx 					       &is_ordinary);
     9         kx 	      if (!is_ordinary)
     9         kx 		object->error(_("section symbol %u has bad shndx %u"),
     9         kx 			      r_sym, shndx);
     9         kx 	      else
     9         kx 		rel_dyn->add_local_section(object, shndx,
     9         kx 					   r_type, output_section,
     9         kx 					   data_shndx, reloc.get_r_offset());
     9         kx 	    }
     9         kx 	}
     9         kx       break;
     9         kx 
     9         kx     case elfcpp::R_386_PC32:
     9         kx     case elfcpp::R_386_PC16:
     9         kx     case elfcpp::R_386_PC8:
     9         kx       break;
     9         kx 
     9         kx     case elfcpp::R_386_PLT32:
     9         kx       // Since we know this is a local symbol, we can handle this as a
     9         kx       // PC32 reloc.
     9         kx       break;
     9         kx 
     9         kx     case elfcpp::R_386_GOTOFF:
     9         kx     case elfcpp::R_386_GOTPC:
     9         kx       // We need a GOT section.
     9         kx       target->got_section(symtab, layout);
     9         kx       break;
     9         kx 
     9         kx     case elfcpp::R_386_GOT32:
     9         kx     case elfcpp::R_386_GOT32X:
     9         kx       {
     9         kx 	// We need GOT section.
     9         kx 	Output_data_got<32, false>* got = target->got_section(symtab, layout);
     9         kx 
     9         kx 	// If the relocation symbol isn't IFUNC,
     9         kx 	// and is local, then we will convert
     9         kx 	// mov foo@GOT(%reg), %reg
     9         kx 	// to
     9         kx 	// lea foo@GOTOFF(%reg), %reg
     9         kx 	// in Relocate::relocate.
     9         kx 	if (reloc.get_r_offset() >= 2
     9         kx 	    && lsym.get_st_type() != elfcpp::STT_GNU_IFUNC)
     9         kx 	  {
     9         kx 	    section_size_type stype;
     9         kx 	    const unsigned char* view = object->section_contents(data_shndx,
     9         kx 								 &stype, true);
     9         kx 	    if (view[reloc.get_r_offset() - 2] == 0x8b)
     9         kx 	      break;
     9         kx 	  }
     9         kx 
     9         kx 	// Otherwise, the symbol requires a GOT entry.
     9         kx 	unsigned int r_sym = elfcpp::elf_r_sym<32>(reloc.get_r_info());
     9         kx 
     9         kx 	// For a STT_GNU_IFUNC symbol we want the PLT offset.  That
     9         kx 	// lets function pointers compare correctly with shared
     9         kx 	// libraries.  Otherwise we would need an IRELATIVE reloc.
     9         kx 	bool is_new;
     9         kx 	if (lsym.get_st_type() == elfcpp::STT_GNU_IFUNC)
     9         kx 	  is_new = got->add_local_plt(object, r_sym, GOT_TYPE_STANDARD);
     9         kx 	else
     9         kx 	  is_new = got->add_local(object, r_sym, GOT_TYPE_STANDARD);
     9         kx 	if (is_new)
     9         kx 	  {
     9         kx 	    // If we are generating a shared object, we need to add a
     9         kx 	    // dynamic RELATIVE relocation for this symbol's GOT entry.
     9         kx 	    if (parameters->options().output_is_position_independent())
     9         kx 	      {
     9         kx 		Reloc_section* rel_dyn = target->rel_dyn_section(layout);
     9         kx 		unsigned int got_offset =
     9         kx 		  object->local_got_offset(r_sym, GOT_TYPE_STANDARD);
     9         kx 		rel_dyn->add_local_relative(object, r_sym,
     9         kx 					    elfcpp::R_386_RELATIVE,
     9         kx 					    got, got_offset);
     9         kx 	      }
     9         kx 	  }
     9         kx       }
     9         kx       break;
     9         kx 
     9         kx       // These are relocations which should only be seen by the
     9         kx       // dynamic linker, and should never be seen here.
     9         kx     case elfcpp::R_386_COPY:
     9         kx     case elfcpp::R_386_GLOB_DAT:
     9         kx     case elfcpp::R_386_JUMP_SLOT:
     9         kx     case elfcpp::R_386_RELATIVE:
     9         kx     case elfcpp::R_386_IRELATIVE:
     9         kx     case elfcpp::R_386_TLS_TPOFF:
     9         kx     case elfcpp::R_386_TLS_DTPMOD32:
     9         kx     case elfcpp::R_386_TLS_DTPOFF32:
     9         kx     case elfcpp::R_386_TLS_TPOFF32:
     9         kx     case elfcpp::R_386_TLS_DESC:
     9         kx       gold_error(_("%s: unexpected reloc %u in object file"),
     9         kx 		 object->name().c_str(), r_type);
     9         kx       break;
     9         kx 
     9         kx       // These are initial TLS relocs, which are expected when
     9         kx       // linking.
     9         kx     case elfcpp::R_386_TLS_GD:            // Global-dynamic
     9         kx     case elfcpp::R_386_TLS_GOTDESC:       // Global-dynamic (from ~oliva url)
     9         kx     case elfcpp::R_386_TLS_DESC_CALL:
     9         kx     case elfcpp::R_386_TLS_LDM:           // Local-dynamic
     9         kx     case elfcpp::R_386_TLS_LDO_32:        // Alternate local-dynamic
     9         kx     case elfcpp::R_386_TLS_IE:            // Initial-exec
     9         kx     case elfcpp::R_386_TLS_IE_32:
     9         kx     case elfcpp::R_386_TLS_GOTIE:
     9         kx     case elfcpp::R_386_TLS_LE:            // Local-exec
     9         kx     case elfcpp::R_386_TLS_LE_32:
     9         kx       {
     9         kx 	bool output_is_shared = parameters->options().shared();
     9         kx 	const tls::Tls_optimization optimized_type
     9         kx 	    = Target_i386::optimize_tls_reloc(!output_is_shared, r_type);
     9         kx 	switch (r_type)
     9         kx 	  {
     9         kx 	  case elfcpp::R_386_TLS_GD:          // Global-dynamic
     9         kx 	    if (optimized_type == tls::TLSOPT_NONE)
     9         kx 	      {
     9         kx 		// Create a pair of GOT entries for the module index and
     9         kx 		// dtv-relative offset.
     9         kx 		Output_data_got<32, false>* got
     9         kx 		    = target->got_section(symtab, layout);
     9         kx 		unsigned int r_sym = elfcpp::elf_r_sym<32>(reloc.get_r_info());
     9         kx 		unsigned int shndx = lsym.get_st_shndx();
     9         kx 		bool is_ordinary;
     9         kx 		shndx = object->adjust_sym_shndx(r_sym, shndx, &is_ordinary);
     9         kx 		if (!is_ordinary)
     9         kx 		  object->error(_("local symbol %u has bad shndx %u"),
     9         kx 			      r_sym, shndx);
     9         kx 		else
     9         kx 		  got->add_local_pair_with_rel(object, r_sym, shndx,
     9         kx 					       GOT_TYPE_TLS_PAIR,
     9         kx 					       target->rel_dyn_section(layout),
     9         kx 					       elfcpp::R_386_TLS_DTPMOD32);
     9         kx 	      }
     9         kx 	    else if (optimized_type != tls::TLSOPT_TO_LE)
     9         kx 	      unsupported_reloc_local(object, r_type);
     9         kx 	    break;
     9         kx 
     9         kx 	  case elfcpp::R_386_TLS_GOTDESC:     // Global-dynamic (from ~oliva)
     9         kx 	    target->define_tls_base_symbol(symtab, layout);
     9         kx 	    if (optimized_type == tls::TLSOPT_NONE)
     9         kx 	      {
     9         kx 		// Create a double GOT entry with an R_386_TLS_DESC
     9         kx 		// reloc.  The R_386_TLS_DESC reloc is resolved
     9         kx 		// lazily, so the GOT entry needs to be in an area in
     9         kx 		// .got.plt, not .got.  Call got_section to make sure
     9         kx 		// the section has been created.
     9         kx 		target->got_section(symtab, layout);
     9         kx 		Output_data_got<32, false>* got = target->got_tlsdesc_section();
     9         kx 		unsigned int r_sym = elfcpp::elf_r_sym<32>(reloc.get_r_info());
     9         kx 		if (!object->local_has_got_offset(r_sym, GOT_TYPE_TLS_DESC))
     9         kx 		  {
     9         kx 		    unsigned int got_offset = got->add_constant(0);
     9         kx 		    // The local symbol value is stored in the second
     9         kx 		    // GOT entry.
     9         kx 		    got->add_local(object, r_sym, GOT_TYPE_TLS_DESC);
     9         kx 		    // That set the GOT offset of the local symbol to
     9         kx 		    // point to the second entry, but we want it to
     9         kx 		    // point to the first.
     9         kx 		    object->set_local_got_offset(r_sym, GOT_TYPE_TLS_DESC,
     9         kx 						 got_offset);
     9         kx 		    Reloc_section* rt = target->rel_tls_desc_section(layout);
     9         kx 		    rt->add_absolute(elfcpp::R_386_TLS_DESC, got, got_offset);
     9         kx 		  }
     9         kx 	      }
     9         kx 	    else if (optimized_type != tls::TLSOPT_TO_LE)
     9         kx 	      unsupported_reloc_local(object, r_type);
     9         kx 	    break;
     9         kx 
     9         kx 	  case elfcpp::R_386_TLS_DESC_CALL:
     9         kx 	    break;
     9         kx 
     9         kx 	  case elfcpp::R_386_TLS_LDM:         // Local-dynamic
     9         kx 	    if (optimized_type == tls::TLSOPT_NONE)
     9         kx 	      {
     9         kx 		// Create a GOT entry for the module index.
     9         kx 		target->got_mod_index_entry(symtab, layout, object);
     9         kx 	      }
     9         kx 	    else if (optimized_type != tls::TLSOPT_TO_LE)
     9         kx 	      unsupported_reloc_local(object, r_type);
     9         kx 	    break;
     9         kx 
     9         kx 	  case elfcpp::R_386_TLS_LDO_32:      // Alternate local-dynamic
     9         kx 	    break;
     9         kx 
     9         kx 	  case elfcpp::R_386_TLS_IE:          // Initial-exec
     9         kx 	  case elfcpp::R_386_TLS_IE_32:
     9         kx 	  case elfcpp::R_386_TLS_GOTIE:
     9         kx 	    layout->set_has_static_tls();
     9         kx 	    if (optimized_type == tls::TLSOPT_NONE)
     9         kx 	      {
     9         kx 		// For the R_386_TLS_IE relocation, we need to create a
     9         kx 		// dynamic relocation when building a shared library.
     9         kx 		if (r_type == elfcpp::R_386_TLS_IE
     9         kx 		    && parameters->options().shared())
     9         kx 		  {
     9         kx 		    Reloc_section* rel_dyn = target->rel_dyn_section(layout);
     9         kx 		    unsigned int r_sym
     9         kx 			= elfcpp::elf_r_sym<32>(reloc.get_r_info());
     9         kx 		    rel_dyn->add_local_relative(object, r_sym,
     9         kx 						elfcpp::R_386_RELATIVE,
     9         kx 						output_section, data_shndx,
     9         kx 						reloc.get_r_offset());
     9         kx 		  }
     9         kx 		// Create a GOT entry for the tp-relative offset.
     9         kx 		Output_data_got<32, false>* got
     9         kx 		    = target->got_section(symtab, layout);
     9         kx 		unsigned int r_sym = elfcpp::elf_r_sym<32>(reloc.get_r_info());
     9         kx 		unsigned int dyn_r_type = (r_type == elfcpp::R_386_TLS_IE_32
     9         kx 					   ? elfcpp::R_386_TLS_TPOFF32
     9         kx 					   : elfcpp::R_386_TLS_TPOFF);
     9         kx 		unsigned int got_type = (r_type == elfcpp::R_386_TLS_IE_32
     9         kx 					 ? GOT_TYPE_TLS_OFFSET
     9         kx 					 : GOT_TYPE_TLS_NOFFSET);
     9         kx 		got->add_local_with_rel(object, r_sym, got_type,
     9         kx 					target->rel_dyn_section(layout),
     9         kx 					dyn_r_type);
     9         kx 	      }
     9         kx 	    else if (optimized_type != tls::TLSOPT_TO_LE)
     9         kx 	      unsupported_reloc_local(object, r_type);
     9         kx 	    break;
     9         kx 
     9         kx 	  case elfcpp::R_386_TLS_LE:          // Local-exec
     9         kx 	  case elfcpp::R_386_TLS_LE_32:
     9         kx 	    layout->set_has_static_tls();
     9         kx 	    if (output_is_shared)
     9         kx 	      {
     9         kx 		// We need to create a dynamic relocation.
     9         kx 		gold_assert(lsym.get_st_type() != elfcpp::STT_SECTION);
     9         kx 		unsigned int r_sym = elfcpp::elf_r_sym<32>(reloc.get_r_info());
     9         kx 		unsigned int dyn_r_type = (r_type == elfcpp::R_386_TLS_LE_32
     9         kx 					   ? elfcpp::R_386_TLS_TPOFF32
     9         kx 					   : elfcpp::R_386_TLS_TPOFF);
     9         kx 		Reloc_section* rel_dyn = target->rel_dyn_section(layout);
     9         kx 		rel_dyn->add_local(object, r_sym, dyn_r_type, output_section,
     9         kx 				   data_shndx, reloc.get_r_offset());
     9         kx 	      }
     9         kx 	    break;
     9         kx 
     9         kx 	  default:
     9         kx 	    gold_unreachable();
     9         kx 	  }
     9         kx       }
     9         kx       break;
     9         kx 
     9         kx     case elfcpp::R_386_32PLT:
     9         kx     case elfcpp::R_386_TLS_GD_32:
     9         kx     case elfcpp::R_386_TLS_GD_PUSH:
     9         kx     case elfcpp::R_386_TLS_GD_CALL:
     9         kx     case elfcpp::R_386_TLS_GD_POP:
     9         kx     case elfcpp::R_386_TLS_LDM_32:
     9         kx     case elfcpp::R_386_TLS_LDM_PUSH:
     9         kx     case elfcpp::R_386_TLS_LDM_CALL:
     9         kx     case elfcpp::R_386_TLS_LDM_POP:
     9         kx     case elfcpp::R_386_USED_BY_INTEL_200:
     9         kx     default:
     9         kx       unsupported_reloc_local(object, r_type);
     9         kx       break;
     9         kx     }
     9         kx }
     9         kx 
     9         kx // Report an unsupported relocation against a global symbol.
     9         kx 
     9         kx void
     9         kx Target_i386::Scan::unsupported_reloc_global(
     9         kx     Sized_relobj_file<32, false>* object,
     9         kx     unsigned int r_type,
     9         kx     Symbol* gsym)
     9         kx {
     9         kx   gold_error(_("%s: unsupported reloc %u against global symbol %s"),
     9         kx 	     object->name().c_str(), r_type, gsym->demangled_name().c_str());
     9         kx }
     9         kx 
     9         kx inline bool
     9         kx Target_i386::Scan::possible_function_pointer_reloc(unsigned int r_type)
     9         kx {
     9         kx   switch (r_type)
     9         kx     {
     9         kx     case elfcpp::R_386_32:
     9         kx     case elfcpp::R_386_16:
     9         kx     case elfcpp::R_386_8:
     9         kx     case elfcpp::R_386_GOTOFF:
     9         kx     case elfcpp::R_386_GOT32:
     9         kx     case elfcpp::R_386_GOT32X:
     9         kx       {
     9         kx 	return true;
     9         kx       }
     9         kx     default:
     9         kx       return false;
     9         kx     }
     9         kx   return false;
     9         kx }
     9         kx 
     9         kx inline bool
     9         kx Target_i386::Scan::local_reloc_may_be_function_pointer(
     9         kx   Symbol_table* ,
     9         kx   Layout* ,
     9         kx   Target_i386* ,
     9         kx   Sized_relobj_file<32, false>* ,
     9         kx   unsigned int ,
     9         kx   Output_section* ,
     9         kx   const elfcpp::Rel<32, false>& ,
     9         kx   unsigned int r_type,
     9         kx   const elfcpp::Sym<32, false>&)
     9         kx {
     9         kx   return possible_function_pointer_reloc(r_type);
     9         kx }
     9         kx 
     9         kx inline bool
     9         kx Target_i386::Scan::global_reloc_may_be_function_pointer(
     9         kx   Symbol_table* ,
     9         kx   Layout* ,
     9         kx   Target_i386* ,
     9         kx   Sized_relobj_file<32, false>* ,
     9         kx   unsigned int ,
     9         kx   Output_section* ,
     9         kx   const elfcpp::Rel<32, false>& ,
     9         kx   unsigned int r_type,
     9         kx   Symbol*)
     9         kx {
     9         kx   return possible_function_pointer_reloc(r_type);
     9         kx }
     9         kx 
     9         kx // Scan a relocation for a global symbol.
     9         kx 
     9         kx inline void
     9         kx Target_i386::Scan::global(Symbol_table* symtab,
     9         kx 				 Layout* layout,
     9         kx 				 Target_i386* target,
     9         kx 				 Sized_relobj_file<32, false>* object,
     9         kx 				 unsigned int data_shndx,
     9         kx 				 Output_section* output_section,
     9         kx 				 const elfcpp::Rel<32, false>& reloc,
     9         kx 				 unsigned int r_type,
     9         kx 				 Symbol* gsym)
     9         kx {
     9         kx   // A STT_GNU_IFUNC symbol may require a PLT entry.
     9         kx   if (gsym->type() == elfcpp::STT_GNU_IFUNC
     9         kx       && this->reloc_needs_plt_for_ifunc(object, r_type))
     9         kx     target->make_plt_entry(symtab, layout, gsym);
     9         kx 
     9         kx   switch (r_type)
     9         kx     {
     9         kx     case elfcpp::R_386_NONE:
     9         kx     case elfcpp::R_386_GNU_VTINHERIT:
     9         kx     case elfcpp::R_386_GNU_VTENTRY:
     9         kx       break;
     9         kx 
     9         kx     case elfcpp::R_386_32:
     9         kx     case elfcpp::R_386_16:
     9         kx     case elfcpp::R_386_8:
     9         kx       {
     9         kx 	// Make a PLT entry if necessary.
     9         kx 	if (gsym->needs_plt_entry())
     9         kx 	  {
     9         kx 	    target->make_plt_entry(symtab, layout, gsym);
     9         kx 	    // Since this is not a PC-relative relocation, we may be
     9         kx 	    // taking the address of a function. In that case we need to
     9         kx 	    // set the entry in the dynamic symbol table to the address of
     9         kx 	    // the PLT entry.
     9         kx 	    if (gsym->is_from_dynobj() && !parameters->options().shared())
     9         kx 	      gsym->set_needs_dynsym_value();
     9         kx 	  }
     9         kx 	// Make a dynamic relocation if necessary.
     9         kx 	if (gsym->needs_dynamic_reloc(Scan::get_reference_flags(r_type)))
     9         kx 	  {
     9         kx 	    if (!parameters->options().output_is_position_independent()
     9         kx 		&& gsym->may_need_copy_reloc())
     9         kx 	      {
     9         kx 		target->copy_reloc(symtab, layout, object,
     9         kx 				   data_shndx, output_section, gsym, reloc);
     9         kx 	      }
     9         kx 	    else if (r_type == elfcpp::R_386_32
     9         kx 		     && gsym->type() == elfcpp::STT_GNU_IFUNC
     9         kx 		     && gsym->can_use_relative_reloc(false)
     9         kx 		     && !gsym->is_from_dynobj()
     9         kx 		     && !gsym->is_undefined()
     9         kx 		     && !gsym->is_preemptible())
     9         kx 	      {
     9         kx 		// Use an IRELATIVE reloc for a locally defined
     9         kx 		// STT_GNU_IFUNC symbol.  This makes a function
     9         kx 		// address in a PIE executable match the address in a
     9         kx 		// shared library that it links against.
     9         kx 		Reloc_section* rel_dyn = target->rel_irelative_section(layout);
     9         kx 		rel_dyn->add_symbolless_global_addend(gsym,
     9         kx 						      elfcpp::R_386_IRELATIVE,
     9         kx 						      output_section,
     9         kx 						      object, data_shndx,
     9         kx 						      reloc.get_r_offset());
     9         kx 	      }
     9         kx 	    else if (r_type == elfcpp::R_386_32
     9         kx 		     && gsym->can_use_relative_reloc(false))
     9         kx 	      {
     9         kx 		Reloc_section* rel_dyn = target->rel_dyn_section(layout);
     9         kx 		rel_dyn->add_global_relative(gsym, elfcpp::R_386_RELATIVE,
     9         kx 					     output_section, object,
     9         kx 					     data_shndx, reloc.get_r_offset());
     9         kx 	      }
     9         kx 	    else
     9         kx 	      {
     9         kx 		Reloc_section* rel_dyn = target->rel_dyn_section(layout);
     9         kx 		rel_dyn->add_global(gsym, r_type, output_section, object,
     9         kx 				    data_shndx, reloc.get_r_offset());
     9         kx 	      }
     9         kx 	  }
     9         kx       }
     9         kx       break;
     9         kx 
     9         kx     case elfcpp::R_386_PC32:
     9         kx     case elfcpp::R_386_PC16:
     9         kx     case elfcpp::R_386_PC8:
     9         kx       {
     9         kx 	// Make a PLT entry if necessary.
     9         kx 	if (gsym->needs_plt_entry())
     9         kx 	  {
     9         kx 	    // These relocations are used for function calls only in
     9         kx 	    // non-PIC code.  For a 32-bit relocation in a shared library,
     9         kx 	    // we'll need a text relocation anyway, so we can skip the
     9         kx 	    // PLT entry and let the dynamic linker bind the call directly
     9         kx 	    // to the target.  For smaller relocations, we should use a
     9         kx 	    // PLT entry to ensure that the call can reach.
     9         kx 	    if (!parameters->options().shared()
     9         kx 		|| r_type != elfcpp::R_386_PC32)
     9         kx 	      target->make_plt_entry(symtab, layout, gsym);
     9         kx 	  }
     9         kx 	// Make a dynamic relocation if necessary.
     9         kx 	if (gsym->needs_dynamic_reloc(Scan::get_reference_flags(r_type)))
     9         kx 	  {
     9         kx 	    if (parameters->options().output_is_executable()
     9         kx 		&& gsym->may_need_copy_reloc())
     9         kx 	      {
     9         kx 		target->copy_reloc(symtab, layout, object,
     9         kx 				   data_shndx, output_section, gsym, reloc);
     9         kx 	      }
     9         kx 	    else
     9         kx 	      {
     9         kx 		Reloc_section* rel_dyn = target->rel_dyn_section(layout);
     9         kx 		rel_dyn->add_global(gsym, r_type, output_section, object,
     9         kx 				    data_shndx, reloc.get_r_offset());
     9         kx 	      }
     9         kx 	  }
     9         kx       }
     9         kx       break;
     9         kx 
     9         kx     case elfcpp::R_386_GOT32:
     9         kx     case elfcpp::R_386_GOT32X:
     9         kx       {
     9         kx 	// The symbol requires a GOT section.
     9         kx 	Output_data_got<32, false>* got = target->got_section(symtab, layout);
     9         kx 
     9         kx 	// If we convert this from
     9         kx 	// mov foo@GOT(%reg), %reg
     9         kx 	// to
     9         kx 	// lea foo@GOTOFF(%reg), %reg
     9         kx 	// in Relocate::relocate, then there is nothing to do here.
     9         kx 	if (reloc.get_r_offset() >= 2
     9         kx 	    && Target_i386::can_convert_mov_to_lea(gsym))
     9         kx 	  {
     9         kx 	    section_size_type stype;
     9         kx 	    const unsigned char* view = object->section_contents(data_shndx,
     9         kx 								 &stype, true);
     9         kx 	    if (view[reloc.get_r_offset() - 2] == 0x8b)
     9         kx 	      break;
     9         kx 	  }
     9         kx 
     9         kx 	if (gsym->final_value_is_known())
     9         kx 	  {
     9         kx 	    // For a STT_GNU_IFUNC symbol we want the PLT address.
     9         kx 	    if (gsym->type() == elfcpp::STT_GNU_IFUNC)
     9         kx 	      got->add_global_plt(gsym, GOT_TYPE_STANDARD);
     9         kx 	    else
     9         kx 	      got->add_global(gsym, GOT_TYPE_STANDARD);
     9         kx 	  }
     9         kx 	else
     9         kx 	  {
     9         kx 	    // If this symbol is not fully resolved, we need to add a
     9         kx 	    // GOT entry with a dynamic relocation.
     9         kx 	    Reloc_section* rel_dyn = target->rel_dyn_section(layout);
     9         kx 
     9         kx 	    // Use a GLOB_DAT rather than a RELATIVE reloc if:
     9         kx 	    //
     9         kx 	    // 1) The symbol may be defined in some other module.
     9         kx 	    //
     9         kx 	    // 2) We are building a shared library and this is a
     9         kx 	    // protected symbol; using GLOB_DAT means that the dynamic
     9         kx 	    // linker can use the address of the PLT in the main
     9         kx 	    // executable when appropriate so that function address
     9         kx 	    // comparisons work.
     9         kx 	    //
     9         kx 	    // 3) This is a STT_GNU_IFUNC symbol in position dependent
     9         kx 	    // code, again so that function address comparisons work.
     9         kx 	    if (gsym->is_from_dynobj()
     9         kx 		|| gsym->is_undefined()
     9         kx 		|| gsym->is_preemptible()
     9         kx 		|| (gsym->visibility() == elfcpp::STV_PROTECTED
     9         kx 		    && parameters->options().shared())
     9         kx 		|| (gsym->type() == elfcpp::STT_GNU_IFUNC
     9         kx 		    && parameters->options().output_is_position_independent()))
     9         kx 	      got->add_global_with_rel(gsym, GOT_TYPE_STANDARD,
     9         kx 				       rel_dyn, elfcpp::R_386_GLOB_DAT);
     9         kx 	    else
     9         kx 	      {
     9         kx 		// For a STT_GNU_IFUNC symbol we want to write the PLT
     9         kx 		// offset into the GOT, so that function pointer
     9         kx 		// comparisons work correctly.
     9         kx 		bool is_new;
     9         kx 		if (gsym->type() != elfcpp::STT_GNU_IFUNC)
     9         kx 		  is_new = got->add_global(gsym, GOT_TYPE_STANDARD);
     9         kx 		else
     9         kx 		  {
     9         kx 		    is_new = got->add_global_plt(gsym, GOT_TYPE_STANDARD);
     9         kx 		    // Tell the dynamic linker to use the PLT address
     9         kx 		    // when resolving relocations.
     9         kx 		    if (gsym->is_from_dynobj()
     9         kx 			&& !parameters->options().shared())
     9         kx 		      gsym->set_needs_dynsym_value();
     9         kx 		  }
     9         kx 		if (is_new)
     9         kx 		  {
     9         kx 		    unsigned int got_off = gsym->got_offset(GOT_TYPE_STANDARD);
     9         kx 		    rel_dyn->add_global_relative(gsym, elfcpp::R_386_RELATIVE,
     9         kx 						 got, got_off);
     9         kx 		  }
     9         kx 	      }
     9         kx 	  }
     9         kx       }
     9         kx       break;
     9         kx 
     9         kx     case elfcpp::R_386_PLT32:
     9         kx       // If the symbol is fully resolved, this is just a PC32 reloc.
     9         kx       // Otherwise we need a PLT entry.
     9         kx       if (gsym->final_value_is_known())
     9         kx 	break;
     9         kx       // If building a shared library, we can also skip the PLT entry
     9         kx       // if the symbol is defined in the output file and is protected
     9         kx       // or hidden.
     9         kx       if (gsym->is_defined()
     9         kx 	  && !gsym->is_from_dynobj()
     9         kx 	  && !gsym->is_preemptible())
     9         kx 	break;
     9         kx       target->make_plt_entry(symtab, layout, gsym);
     9         kx       break;
     9         kx 
     9         kx     case elfcpp::R_386_GOTOFF:
     9         kx       // A GOT-relative reference must resolve locally.
     9         kx       if (!gsym->is_defined())
     9         kx         gold_error(_("%s: relocation R_386_GOTOFF against undefined symbol %s"
     9         kx 		     " cannot be used when making a shared object"),
     9         kx 		   object->name().c_str(), gsym->name());
     9         kx       else if (gsym->is_from_dynobj())
     9         kx         gold_error(_("%s: relocation R_386_GOTOFF against external symbol %s"
     9         kx 		     " cannot be used when making a shared object"),
     9         kx 		   object->name().c_str(), gsym->name());
     9         kx       else if (gsym->is_preemptible())
     9         kx         gold_error(_("%s: relocation R_386_GOTOFF against preemptible symbol %s"
     9         kx 		     " cannot be used when making a shared object"),
     9         kx 		   object->name().c_str(), gsym->name());
     9         kx       // We need a GOT section.
     9         kx       target->got_section(symtab, layout);
     9         kx       break;
     9         kx 
     9         kx     case elfcpp::R_386_GOTPC:
     9         kx       // We need a GOT section.
     9         kx       target->got_section(symtab, layout);
     9         kx       break;
     9         kx 
     9         kx       // These are relocations which should only be seen by the
     9         kx       // dynamic linker, and should never be seen here.
     9         kx     case elfcpp::R_386_COPY:
     9         kx     case elfcpp::R_386_GLOB_DAT:
     9         kx     case elfcpp::R_386_JUMP_SLOT:
     9         kx     case elfcpp::R_386_RELATIVE:
     9         kx     case elfcpp::R_386_IRELATIVE:
     9         kx     case elfcpp::R_386_TLS_TPOFF:
     9         kx     case elfcpp::R_386_TLS_DTPMOD32:
     9         kx     case elfcpp::R_386_TLS_DTPOFF32:
     9         kx     case elfcpp::R_386_TLS_TPOFF32:
     9         kx     case elfcpp::R_386_TLS_DESC:
     9         kx       gold_error(_("%s: unexpected reloc %u in object file"),
     9         kx 		 object->name().c_str(), r_type);
     9         kx       break;
     9         kx 
     9         kx       // These are initial tls relocs, which are expected when
     9         kx       // linking.
     9         kx     case elfcpp::R_386_TLS_GD:            // Global-dynamic
     9         kx     case elfcpp::R_386_TLS_GOTDESC:       // Global-dynamic (from ~oliva url)
     9         kx     case elfcpp::R_386_TLS_DESC_CALL:
     9         kx     case elfcpp::R_386_TLS_LDM:           // Local-dynamic
     9         kx     case elfcpp::R_386_TLS_LDO_32:        // Alternate local-dynamic
     9         kx     case elfcpp::R_386_TLS_IE:            // Initial-exec
     9         kx     case elfcpp::R_386_TLS_IE_32:
     9         kx     case elfcpp::R_386_TLS_GOTIE:
     9         kx     case elfcpp::R_386_TLS_LE:            // Local-exec
     9         kx     case elfcpp::R_386_TLS_LE_32:
     9         kx       {
     9         kx 	const bool is_final = gsym->final_value_is_known();
     9         kx 	const tls::Tls_optimization optimized_type
     9         kx 	    = Target_i386::optimize_tls_reloc(is_final, r_type);
     9         kx 	switch (r_type)
     9         kx 	  {
     9         kx 	  case elfcpp::R_386_TLS_GD:          // Global-dynamic
     9         kx 	    if (optimized_type == tls::TLSOPT_NONE)
     9         kx 	      {
     9         kx 		// Create a pair of GOT entries for the module index and
     9         kx 		// dtv-relative offset.
     9         kx 		Output_data_got<32, false>* got
     9         kx 		    = target->got_section(symtab, layout);
     9         kx 		got->add_global_pair_with_rel(gsym, GOT_TYPE_TLS_PAIR,
     9         kx 					     target->rel_dyn_section(layout),
     9         kx 					     elfcpp::R_386_TLS_DTPMOD32,
     9         kx 					     elfcpp::R_386_TLS_DTPOFF32);
     9         kx 	      }
     9         kx 	    else if (optimized_type == tls::TLSOPT_TO_IE)
     9         kx 	      {
     9         kx 		// Create a GOT entry for the tp-relative offset.
     9         kx 		Output_data_got<32, false>* got
     9         kx 		    = target->got_section(symtab, layout);
     9         kx 		got->add_global_with_rel(gsym, GOT_TYPE_TLS_NOFFSET,
     9         kx 					 target->rel_dyn_section(layout),
     9         kx 					 elfcpp::R_386_TLS_TPOFF);
     9         kx 	      }
     9         kx 	    else if (optimized_type != tls::TLSOPT_TO_LE)
     9         kx 	      unsupported_reloc_global(object, r_type, gsym);
     9         kx 	    break;
     9         kx 
     9         kx 	  case elfcpp::R_386_TLS_GOTDESC:     // Global-dynamic (~oliva url)
     9         kx 	    target->define_tls_base_symbol(symtab, layout);
     9         kx 	    if (optimized_type == tls::TLSOPT_NONE)
     9         kx 	      {
     9         kx 		// Create a double GOT entry with an R_386_TLS_DESC
     9         kx 		// reloc.  The R_386_TLS_DESC reloc is resolved
     9         kx 		// lazily, so the GOT entry needs to be in an area in
     9         kx 		// .got.plt, not .got.  Call got_section to make sure
     9         kx 		// the section has been created.
     9         kx 		target->got_section(symtab, layout);
     9         kx 		Output_data_got<32, false>* got = target->got_tlsdesc_section();
     9         kx 		Reloc_section* rt = target->rel_tls_desc_section(layout);
     9         kx 		got->add_global_pair_with_rel(gsym, GOT_TYPE_TLS_DESC, rt,
     9         kx 					     elfcpp::R_386_TLS_DESC, 0);
     9         kx 	      }
     9         kx 	    else if (optimized_type == tls::TLSOPT_TO_IE)
     9         kx 	      {
     9         kx 		// Create a GOT entry for the tp-relative offset.
     9         kx 		Output_data_got<32, false>* got
     9         kx 		    = target->got_section(symtab, layout);
     9         kx 		got->add_global_with_rel(gsym, GOT_TYPE_TLS_NOFFSET,
     9         kx 					 target->rel_dyn_section(layout),
     9         kx 					 elfcpp::R_386_TLS_TPOFF);
     9         kx 	      }
     9         kx 	    else if (optimized_type != tls::TLSOPT_TO_LE)
     9         kx 	      unsupported_reloc_global(object, r_type, gsym);
     9         kx 	    break;
     9         kx 
     9         kx 	  case elfcpp::R_386_TLS_DESC_CALL:
     9         kx 	    break;
     9         kx 
     9         kx 	  case elfcpp::R_386_TLS_LDM:         // Local-dynamic
     9         kx 	    if (optimized_type == tls::TLSOPT_NONE)
     9         kx 	      {
     9         kx 		// Create a GOT entry for the module index.
     9         kx 		target->got_mod_index_entry(symtab, layout, object);
     9         kx 	      }
     9         kx 	    else if (optimized_type != tls::TLSOPT_TO_LE)
     9         kx 	      unsupported_reloc_global(object, r_type, gsym);
     9         kx 	    break;
     9         kx 
     9         kx 	  case elfcpp::R_386_TLS_LDO_32:      // Alternate local-dynamic
     9         kx 	    break;
     9         kx 
     9         kx 	  case elfcpp::R_386_TLS_IE:          // Initial-exec
     9         kx 	  case elfcpp::R_386_TLS_IE_32:
     9         kx 	  case elfcpp::R_386_TLS_GOTIE:
     9         kx 	    layout->set_has_static_tls();
     9         kx 	    if (optimized_type == tls::TLSOPT_NONE)
     9         kx 	      {
     9         kx 		// For the R_386_TLS_IE relocation, we need to create a
     9         kx 		// dynamic relocation when building a shared library.
     9         kx 		if (r_type == elfcpp::R_386_TLS_IE
     9         kx 		    && parameters->options().shared())
     9         kx 		  {
     9         kx 		    Reloc_section* rel_dyn = target->rel_dyn_section(layout);
     9         kx 		    rel_dyn->add_global_relative(gsym, elfcpp::R_386_RELATIVE,
     9         kx 						 output_section, object,
     9         kx 						 data_shndx,
     9         kx 						 reloc.get_r_offset());
     9         kx 		  }
     9         kx 		// Create a GOT entry for the tp-relative offset.
     9         kx 		Output_data_got<32, false>* got
     9         kx 		    = target->got_section(symtab, layout);
     9         kx 		unsigned int dyn_r_type = (r_type == elfcpp::R_386_TLS_IE_32
     9         kx 					   ? elfcpp::R_386_TLS_TPOFF32
     9         kx 					   : elfcpp::R_386_TLS_TPOFF);
     9         kx 		unsigned int got_type = (r_type == elfcpp::R_386_TLS_IE_32
     9         kx 					 ? GOT_TYPE_TLS_OFFSET
     9         kx 					 : GOT_TYPE_TLS_NOFFSET);
     9         kx 		got->add_global_with_rel(gsym, got_type,
     9         kx 					 target->rel_dyn_section(layout),
     9         kx 					 dyn_r_type);
     9         kx 	      }
     9         kx 	    else if (optimized_type != tls::TLSOPT_TO_LE)
     9         kx 	      unsupported_reloc_global(object, r_type, gsym);
     9         kx 	    break;
     9         kx 
     9         kx 	  case elfcpp::R_386_TLS_LE:          // Local-exec
     9         kx 	  case elfcpp::R_386_TLS_LE_32:
     9         kx 	    layout->set_has_static_tls();
     9         kx 	    if (parameters->options().shared())
     9         kx 	      {
     9         kx 		// We need to create a dynamic relocation.
     9         kx 		unsigned int dyn_r_type = (r_type == elfcpp::R_386_TLS_LE_32
     9         kx 					   ? elfcpp::R_386_TLS_TPOFF32
     9         kx 					   : elfcpp::R_386_TLS_TPOFF);
     9         kx 		Reloc_section* rel_dyn = target->rel_dyn_section(layout);
     9         kx 		rel_dyn->add_global(gsym, dyn_r_type, output_section, object,
     9         kx 				    data_shndx, reloc.get_r_offset());
     9         kx 	      }
     9         kx 	    break;
     9         kx 
     9         kx 	  default:
     9         kx 	    gold_unreachable();
     9         kx 	  }
     9         kx       }
     9         kx       break;
     9         kx 
     9         kx     case elfcpp::R_386_32PLT:
     9         kx     case elfcpp::R_386_TLS_GD_32:
     9         kx     case elfcpp::R_386_TLS_GD_PUSH:
     9         kx     case elfcpp::R_386_TLS_GD_CALL:
     9         kx     case elfcpp::R_386_TLS_GD_POP:
     9         kx     case elfcpp::R_386_TLS_LDM_32:
     9         kx     case elfcpp::R_386_TLS_LDM_PUSH:
     9         kx     case elfcpp::R_386_TLS_LDM_CALL:
     9         kx     case elfcpp::R_386_TLS_LDM_POP:
     9         kx     case elfcpp::R_386_USED_BY_INTEL_200:
     9         kx     default:
     9         kx       unsupported_reloc_global(object, r_type, gsym);
     9         kx       break;
     9         kx     }
     9         kx }
     9         kx 
     9         kx // Process relocations for gc.
     9         kx 
     9         kx void
     9         kx Target_i386::gc_process_relocs(Symbol_table* symtab,
     9         kx 				      Layout* layout,
     9         kx 				      Sized_relobj_file<32, false>* object,
     9         kx 				      unsigned int data_shndx,
     9         kx 				      unsigned int,
     9         kx 				      const unsigned char* prelocs,
     9         kx 				      size_t reloc_count,
     9         kx 				      Output_section* output_section,
     9         kx 				      bool needs_special_offset_handling,
     9         kx 				      size_t local_symbol_count,
     9         kx 				      const unsigned char* plocal_symbols)
     9         kx {
     9         kx   gold::gc_process_relocs<32, false, Target_i386, Scan, Classify_reloc>(
     9         kx     symtab,
     9         kx     layout,
     9         kx     this,
     9         kx     object,
     9         kx     data_shndx,
     9         kx     prelocs,
     9         kx     reloc_count,
     9         kx     output_section,
     9         kx     needs_special_offset_handling,
     9         kx     local_symbol_count,
     9         kx     plocal_symbols);
     9         kx }
     9         kx 
     9         kx // Scan relocations for a section.
     9         kx 
     9         kx void
     9         kx Target_i386::scan_relocs(Symbol_table* symtab,
     9         kx 				Layout* layout,
     9         kx 				Sized_relobj_file<32, false>* object,
     9         kx 				unsigned int data_shndx,
     9         kx 				unsigned int sh_type,
     9         kx 				const unsigned char* prelocs,
     9         kx 				size_t reloc_count,
     9         kx 				Output_section* output_section,
     9         kx 				bool needs_special_offset_handling,
     9         kx 				size_t local_symbol_count,
     9         kx 				const unsigned char* plocal_symbols)
     9         kx {
     9         kx   if (sh_type == elfcpp::SHT_RELA)
     9         kx     {
     9         kx       gold_error(_("%s: unsupported RELA reloc section"),
     9         kx 		 object->name().c_str());
     9         kx       return;
     9         kx     }
     9         kx 
     9         kx   gold::scan_relocs<32, false, Target_i386, Scan, Classify_reloc>(
     9         kx     symtab,
     9         kx     layout,
     9         kx     this,
     9         kx     object,
     9         kx     data_shndx,
     9         kx     prelocs,
     9         kx     reloc_count,
     9         kx     output_section,
     9         kx     needs_special_offset_handling,
     9         kx     local_symbol_count,
     9         kx     plocal_symbols);
     9         kx }
     9         kx 
     9         kx // Finalize the sections.
     9         kx 
     9         kx void
     9         kx Target_i386::do_finalize_sections(
     9         kx     Layout* layout,
     9         kx     const Input_objects*,
     9         kx     Symbol_table* symtab)
     9         kx {
     9         kx   const Reloc_section* rel_plt = (this->plt_ == NULL
     9         kx 				  ? NULL
     9         kx 				  : this->plt_->rel_plt());
     9         kx   layout->add_target_dynamic_tags(true, this->got_plt_, rel_plt,
     9         kx 				  this->rel_dyn_, true, false);
     9         kx 
     9         kx   // Emit any relocs we saved in an attempt to avoid generating COPY
     9         kx   // relocs.
     9         kx   if (this->copy_relocs_.any_saved_relocs())
     9         kx     this->copy_relocs_.emit(this->rel_dyn_section(layout));
     9         kx 
     9         kx   // Set the size of the _GLOBAL_OFFSET_TABLE_ symbol to the size of
     9         kx   // the .got.plt section.
     9         kx   Symbol* sym = this->global_offset_table_;
     9         kx   if (sym != NULL)
     9         kx     {
     9         kx       uint32_t data_size = this->got_plt_->current_data_size();
     9         kx       symtab->get_sized_symbol<32>(sym)->set_symsize(data_size);
     9         kx     }
     9         kx 
     9         kx   if (parameters->doing_static_link()
     9         kx       && (this->plt_ == NULL || !this->plt_->has_irelative_section()))
     9         kx     {
     9         kx       // If linking statically, make sure that the __rel_iplt symbols
     9         kx       // were defined if necessary, even if we didn't create a PLT.
     9         kx       static const Define_symbol_in_segment syms[] =
     9         kx 	{
     9         kx 	  {
     9         kx 	    "__rel_iplt_start",		// name
     9         kx 	    elfcpp::PT_LOAD,		// segment_type
     9         kx 	    elfcpp::PF_W,		// segment_flags_set
     9         kx 	    elfcpp::PF(0),		// segment_flags_clear
     9         kx 	    0,				// value
     9         kx 	    0,				// size
     9         kx 	    elfcpp::STT_NOTYPE,		// type
     9         kx 	    elfcpp::STB_GLOBAL,		// binding
     9         kx 	    elfcpp::STV_HIDDEN,		// visibility
     9         kx 	    0,				// nonvis
     9         kx 	    Symbol::SEGMENT_START,	// offset_from_base
     9         kx 	    true			// only_if_ref
     9         kx 	  },
     9         kx 	  {
     9         kx 	    "__rel_iplt_end",		// name
     9         kx 	    elfcpp::PT_LOAD,		// segment_type
     9         kx 	    elfcpp::PF_W,		// segment_flags_set
     9         kx 	    elfcpp::PF(0),		// segment_flags_clear
     9         kx 	    0,				// value
     9         kx 	    0,				// size
     9         kx 	    elfcpp::STT_NOTYPE,		// type
     9         kx 	    elfcpp::STB_GLOBAL,		// binding
     9         kx 	    elfcpp::STV_HIDDEN,		// visibility
     9         kx 	    0,				// nonvis
     9         kx 	    Symbol::SEGMENT_START,	// offset_from_base
     9         kx 	    true			// only_if_ref
     9         kx 	  }
     9         kx 	};
     9         kx 
     9         kx       symtab->define_symbols(layout, 2, syms,
     9         kx 			     layout->script_options()->saw_sections_clause());
     9         kx     }
     9         kx }
     9         kx 
     9         kx // Return whether a direct absolute static relocation needs to be applied.
     9         kx // In cases where Scan::local() or Scan::global() has created
     9         kx // a dynamic relocation other than R_386_RELATIVE, the addend
     9         kx // of the relocation is carried in the data, and we must not
     9         kx // apply the static relocation.
     9         kx 
     9         kx inline bool
     9         kx Target_i386::Relocate::should_apply_static_reloc(const Sized_symbol<32>* gsym,
     9         kx 						 unsigned int r_type,
     9         kx 						 bool is_32bit,
     9         kx 						 Output_section* output_section)
     9         kx {
     9         kx   // If the output section is not allocated, then we didn't call
     9         kx   // scan_relocs, we didn't create a dynamic reloc, and we must apply
     9         kx   // the reloc here.
     9         kx   if ((output_section->flags() & elfcpp::SHF_ALLOC) == 0)
     9         kx     return true;
     9         kx 
     9         kx   int ref_flags = Scan::get_reference_flags(r_type);
     9         kx 
     9         kx   // For local symbols, we will have created a non-RELATIVE dynamic
     9         kx   // relocation only if (a) the output is position independent,
     9         kx   // (b) the relocation is absolute (not pc- or segment-relative), and
     9         kx   // (c) the relocation is not 32 bits wide.
     9         kx   if (gsym == NULL)
     9         kx     return !(parameters->options().output_is_position_independent()
     9         kx 	     && (ref_flags & Symbol::ABSOLUTE_REF)
     9         kx 	     && !is_32bit);
     9         kx 
     9         kx   // For global symbols, we use the same helper routines used in the
     9         kx   // scan pass.  If we did not create a dynamic relocation, or if we
     9         kx   // created a RELATIVE dynamic relocation, we should apply the static
     9         kx   // relocation.
     9         kx   bool has_dyn = gsym->needs_dynamic_reloc(ref_flags);
     9         kx   bool is_rel = (ref_flags & Symbol::ABSOLUTE_REF)
     9         kx 		&& gsym->can_use_relative_reloc(ref_flags
     9         kx 						& Symbol::FUNCTION_CALL);
     9         kx   return !has_dyn || is_rel;
     9         kx }
     9         kx 
     9         kx // Perform a relocation.
     9         kx 
     9         kx inline bool
     9         kx Target_i386::Relocate::relocate(const Relocate_info<32, false>* relinfo,
     9         kx 				unsigned int,
     9         kx 				Target_i386* target,
     9         kx 				Output_section* output_section,
     9         kx 				size_t relnum,
     9         kx 				const unsigned char* preloc,
     9         kx 				const Sized_symbol<32>* gsym,
     9         kx 				const Symbol_value<32>* psymval,
     9         kx 				unsigned char* view,
     9         kx 				elfcpp::Elf_types<32>::Elf_Addr address,
     9         kx 				section_size_type view_size)
     9         kx {
     9         kx   const elfcpp::Rel<32, false> rel(preloc);
     9         kx   unsigned int r_type = elfcpp::elf_r_type<32>(rel.get_r_info());
     9         kx 
     9         kx   if (this->skip_call_tls_get_addr_)
     9         kx     {
     9         kx       if ((r_type != elfcpp::R_386_PLT32
     9         kx 	   && r_type != elfcpp::R_386_GOT32X
     9         kx 	   && r_type != elfcpp::R_386_PC32)
     9         kx 	  || gsym == NULL
     9         kx 	  || strcmp(gsym->name(), "___tls_get_addr") != 0)
     9         kx 	{
     9         kx 	  gold_error_at_location(relinfo, relnum, rel.get_r_offset(),
     9         kx 				 _("missing expected TLS relocation"));
     9         kx 	  this->skip_call_tls_get_addr_ = false;
     9         kx 	}
     9         kx       else
     9         kx 	{
     9         kx 	  this->skip_call_tls_get_addr_ = false;
     9         kx 	  return false;
     9         kx 	}
     9         kx     }
     9         kx 
     9         kx   if (view == NULL)
     9         kx     return true;
     9         kx 
     9         kx   const Sized_relobj_file<32, false>* object = relinfo->object;
     9         kx 
     9         kx   // Pick the value to use for symbols defined in shared objects.
     9         kx   Symbol_value<32> symval;
     9         kx   if (gsym != NULL
     9         kx       && gsym->type() == elfcpp::STT_GNU_IFUNC
     9         kx       && r_type == elfcpp::R_386_32
     9         kx       && gsym->needs_dynamic_reloc(Scan::get_reference_flags(r_type))
     9         kx       && gsym->can_use_relative_reloc(false)
     9         kx       && !gsym->is_from_dynobj()
     9         kx       && !gsym->is_undefined()
     9         kx       && !gsym->is_preemptible())
     9         kx     {
     9         kx       // In this case we are generating a R_386_IRELATIVE reloc.  We
     9         kx       // want to use the real value of the symbol, not the PLT offset.
     9         kx     }
     9         kx   else if (gsym != NULL
     9         kx 	   && gsym->use_plt_offset(Scan::get_reference_flags(r_type)))
     9         kx     {
     9         kx       symval.set_output_value(target->plt_address_for_global(gsym));
     9         kx       psymval = &symval;
     9         kx     }
     9         kx   else if (gsym == NULL && psymval->is_ifunc_symbol())
     9         kx     {
     9         kx       unsigned int r_sym = elfcpp::elf_r_sym<32>(rel.get_r_info());
     9         kx       if (object->local_has_plt_offset(r_sym))
     9         kx 	{
     9         kx 	  symval.set_output_value(target->plt_address_for_local(object, r_sym));
     9         kx 	  psymval = &symval;
     9         kx 	}
     9         kx     }
     9         kx 
     9         kx   bool baseless;
     9         kx 
     9         kx   switch (r_type)
     9         kx     {
     9         kx     case elfcpp::R_386_NONE:
     9         kx     case elfcpp::R_386_GNU_VTINHERIT:
     9         kx     case elfcpp::R_386_GNU_VTENTRY:
     9         kx       break;
     9         kx 
     9         kx     case elfcpp::R_386_32:
     9         kx       if (should_apply_static_reloc(gsym, r_type, true, output_section))
     9         kx 	Relocate_functions<32, false>::rel32(view, object, psymval);
     9         kx       break;
     9         kx 
     9         kx     case elfcpp::R_386_PC32:
     9         kx       if (should_apply_static_reloc(gsym, r_type, true, output_section))
     9         kx 	Relocate_functions<32, false>::pcrel32(view, object, psymval, address);
     9         kx       break;
     9         kx 
     9         kx     case elfcpp::R_386_16:
     9         kx       if (should_apply_static_reloc(gsym, r_type, false, output_section))
     9         kx 	Relocate_functions<32, false>::rel16(view, object, psymval);
     9         kx       break;
     9         kx 
     9         kx     case elfcpp::R_386_PC16:
     9         kx       if (should_apply_static_reloc(gsym, r_type, false, output_section))
     9         kx 	Relocate_functions<32, false>::pcrel16(view, object, psymval, address);
     9         kx       break;
     9         kx 
     9         kx     case elfcpp::R_386_8:
     9         kx       if (should_apply_static_reloc(gsym, r_type, false, output_section))
     9         kx 	Relocate_functions<32, false>::rel8(view, object, psymval);
     9         kx       break;
     9         kx 
     9         kx     case elfcpp::R_386_PC8:
     9         kx       if (should_apply_static_reloc(gsym, r_type, false, output_section))
     9         kx 	Relocate_functions<32, false>::pcrel8(view, object, psymval, address);
     9         kx       break;
     9         kx 
     9         kx     case elfcpp::R_386_PLT32:
     9         kx       gold_assert(gsym == NULL
     9         kx 		  || gsym->has_plt_offset()
     9         kx 		  || gsym->final_value_is_known()
     9         kx 		  || (gsym->is_defined()
     9         kx 		      && !gsym->is_from_dynobj()
     9         kx 		      && !gsym->is_preemptible()));
     9         kx       Relocate_functions<32, false>::pcrel32(view, object, psymval, address);
     9         kx       break;
     9         kx 
     9         kx     case elfcpp::R_386_GOT32:
     9         kx     case elfcpp::R_386_GOT32X:
     9         kx       baseless = (view[-1] & 0xc7) == 0x5;
     9         kx       // R_386_GOT32 and R_386_GOT32X don't work without base register
     9         kx       // when generating a position-independent output file.
     9         kx       if (baseless
     9         kx 	  && parameters->options().output_is_position_independent())
     9         kx 	{
     9         kx 	  if(gsym)
     9         kx 	    gold_error_at_location(relinfo, relnum, rel.get_r_offset(),
     9         kx 				   _("unexpected reloc %u against global symbol %s without base register in object file when generating a position-independent output file"),
     9         kx 				   r_type, gsym->demangled_name().c_str());
     9         kx 	  else
     9         kx 	    gold_error_at_location(relinfo, relnum, rel.get_r_offset(),
     9         kx 				   _("unexpected reloc %u against local symbol without base register in object file when generating a position-independent output file"),
     9         kx 				   r_type);
     9         kx 	}
     9         kx 
     9         kx       // Convert
     9         kx       // mov foo@GOT(%reg), %reg
     9         kx       // to
     9         kx       // lea foo@GOTOFF(%reg), %reg
     9         kx       // if possible.
     9         kx       if (rel.get_r_offset() >= 2
     9         kx 	  && view[-2] == 0x8b
     9         kx 	  && ((gsym == NULL && !psymval->is_ifunc_symbol())
     9         kx 	      || (gsym != NULL
     9         kx 		  && Target_i386::can_convert_mov_to_lea(gsym))))
     9         kx 	{
     9         kx 	  view[-2] = 0x8d;
     9         kx 	  elfcpp::Elf_types<32>::Elf_Addr value;
     9         kx 	  value = psymval->value(object, 0);
     9         kx 	  // Don't subtract the .got.plt section address for baseless
     9         kx 	  // addressing.
     9         kx 	  if (!baseless)
     9         kx 	    value -= target->got_plt_section()->address();
     9         kx 	  Relocate_functions<32, false>::rel32(view, value);
     9         kx 	}
     9         kx       else
     9         kx 	{
     9         kx 	  // The GOT pointer points to the end of the GOT section.
     9         kx 	  // We need to subtract the size of the GOT section to get
     9         kx 	  // the actual offset to use in the relocation.
     9         kx 	  unsigned int got_offset = 0;
     9         kx 	  if (gsym != NULL)
     9         kx 	    {
     9         kx 	      gold_assert(gsym->has_got_offset(GOT_TYPE_STANDARD));
     9         kx 	      got_offset = (gsym->got_offset(GOT_TYPE_STANDARD)
     9         kx 			    - target->got_size());
     9         kx 	    }
     9         kx 	  else
     9         kx 	    {
     9         kx 	      unsigned int r_sym = elfcpp::elf_r_sym<32>(rel.get_r_info());
     9         kx 	      gold_assert(object->local_has_got_offset(r_sym, GOT_TYPE_STANDARD));
     9         kx 	      got_offset = (object->local_got_offset(r_sym, GOT_TYPE_STANDARD)
     9         kx 			    - target->got_size());
     9         kx 	    }
     9         kx 	  // Add the .got.plt section address for baseless addressing.
     9         kx 	  if (baseless)
     9         kx 	    got_offset += target->got_plt_section()->address();
     9         kx 	  Relocate_functions<32, false>::rel32(view, got_offset);
     9         kx 	}
     9         kx       break;
     9         kx 
     9         kx     case elfcpp::R_386_GOTOFF:
     9         kx       {
     9         kx 	elfcpp::Elf_types<32>::Elf_Addr reladdr;
     9         kx 	reladdr = target->got_plt_section()->address();
     9         kx 	Relocate_functions<32, false>::pcrel32(view, object, psymval, reladdr);
     9         kx       }
     9         kx       break;
     9         kx 
     9         kx     case elfcpp::R_386_GOTPC:
     9         kx       {
     9         kx 	elfcpp::Elf_types<32>::Elf_Addr value;
     9         kx 	value = target->got_plt_section()->address();
     9         kx 	Relocate_functions<32, false>::pcrel32(view, value, address);
     9         kx       }
     9         kx       break;
     9         kx 
     9         kx     case elfcpp::R_386_COPY:
     9         kx     case elfcpp::R_386_GLOB_DAT:
     9         kx     case elfcpp::R_386_JUMP_SLOT:
     9         kx     case elfcpp::R_386_RELATIVE:
     9         kx     case elfcpp::R_386_IRELATIVE:
     9         kx       // These are outstanding tls relocs, which are unexpected when
     9         kx       // linking.
     9         kx     case elfcpp::R_386_TLS_TPOFF:
     9         kx     case elfcpp::R_386_TLS_DTPMOD32:
     9         kx     case elfcpp::R_386_TLS_DTPOFF32:
     9         kx     case elfcpp::R_386_TLS_TPOFF32:
     9         kx     case elfcpp::R_386_TLS_DESC:
     9         kx       gold_error_at_location(relinfo, relnum, rel.get_r_offset(),
     9         kx 			     _("unexpected reloc %u in object file"),
     9         kx 			     r_type);
     9         kx       break;
     9         kx 
     9         kx       // These are initial tls relocs, which are expected when
     9         kx       // linking.
     9         kx     case elfcpp::R_386_TLS_GD:             // Global-dynamic
     9         kx     case elfcpp::R_386_TLS_GOTDESC:        // Global-dynamic (from ~oliva url)
     9         kx     case elfcpp::R_386_TLS_DESC_CALL:
     9         kx     case elfcpp::R_386_TLS_LDM:            // Local-dynamic
     9         kx     case elfcpp::R_386_TLS_LDO_32:         // Alternate local-dynamic
     9         kx     case elfcpp::R_386_TLS_IE:             // Initial-exec
     9         kx     case elfcpp::R_386_TLS_IE_32:
     9         kx     case elfcpp::R_386_TLS_GOTIE:
     9         kx     case elfcpp::R_386_TLS_LE:             // Local-exec
     9         kx     case elfcpp::R_386_TLS_LE_32:
     9         kx       this->relocate_tls(relinfo, target, relnum, rel, r_type, gsym, psymval,
     9         kx 			 view, address, view_size);
     9         kx       break;
     9         kx 
     9         kx     case elfcpp::R_386_32PLT:
     9         kx     case elfcpp::R_386_TLS_GD_32:
     9         kx     case elfcpp::R_386_TLS_GD_PUSH:
     9         kx     case elfcpp::R_386_TLS_GD_CALL:
     9         kx     case elfcpp::R_386_TLS_GD_POP:
     9         kx     case elfcpp::R_386_TLS_LDM_32:
     9         kx     case elfcpp::R_386_TLS_LDM_PUSH:
     9         kx     case elfcpp::R_386_TLS_LDM_CALL:
     9         kx     case elfcpp::R_386_TLS_LDM_POP:
     9         kx     case elfcpp::R_386_USED_BY_INTEL_200:
     9         kx     default:
     9         kx       gold_error_at_location(relinfo, relnum, rel.get_r_offset(),
     9         kx 			     _("unsupported reloc %u"),
     9         kx 			     r_type);
     9         kx       break;
     9         kx     }
     9         kx 
     9         kx   return true;
     9         kx }
     9         kx 
     9         kx // Perform a TLS relocation.
     9         kx 
     9         kx inline void
     9         kx Target_i386::Relocate::relocate_tls(const Relocate_info<32, false>* relinfo,
     9         kx 				    Target_i386* target,
     9         kx 				    size_t relnum,
     9         kx 				    const elfcpp::Rel<32, false>& rel,
     9         kx 				    unsigned int r_type,
     9         kx 				    const Sized_symbol<32>* gsym,
     9         kx 				    const Symbol_value<32>* psymval,
     9         kx 				    unsigned char* view,
     9         kx 				    elfcpp::Elf_types<32>::Elf_Addr,
     9         kx 				    section_size_type view_size)
     9         kx {
     9         kx   Output_segment* tls_segment = relinfo->layout->tls_segment();
     9         kx 
     9         kx   const Sized_relobj_file<32, false>* object = relinfo->object;
     9         kx 
     9         kx   elfcpp::Elf_types<32>::Elf_Addr value = psymval->value(object, 0);
     9         kx 
     9         kx   const bool is_final = (gsym == NULL
     9         kx 			 ? !parameters->options().shared()
     9         kx 			 : gsym->final_value_is_known());
     9         kx   const tls::Tls_optimization optimized_type
     9         kx       = Target_i386::optimize_tls_reloc(is_final, r_type);
     9         kx   switch (r_type)
     9         kx     {
     9         kx     case elfcpp::R_386_TLS_GD:           // Global-dynamic
     9         kx       if (optimized_type == tls::TLSOPT_TO_LE)
     9         kx 	{
     9         kx 	  if (tls_segment == NULL)
     9         kx 	    {
     9         kx 	      gold_assert(parameters->errors()->error_count() > 0
     9         kx 			  || issue_undefined_symbol_error(gsym));
     9         kx 	      return;
     9         kx 	    }
     9         kx 	  this->tls_gd_to_le(relinfo, relnum, tls_segment,
     9         kx 			     rel, r_type, value, view,
     9         kx 			     view_size);
     9         kx 	  break;
     9         kx 	}
     9         kx       else
     9         kx 	{
     9         kx 	  unsigned int got_type = (optimized_type == tls::TLSOPT_TO_IE
     9         kx 				   ? GOT_TYPE_TLS_NOFFSET
     9         kx 				   : GOT_TYPE_TLS_PAIR);
     9         kx 	  unsigned int got_offset;
     9         kx 	  if (gsym != NULL)
     9         kx 	    {
     9         kx 	      gold_assert(gsym->has_got_offset(got_type));
     9         kx 	      got_offset = gsym->got_offset(got_type) - target->got_size();
     9         kx 	    }
     9         kx 	  else
     9         kx 	    {
     9         kx 	      unsigned int r_sym = elfcpp::elf_r_sym<32>(rel.get_r_info());
     9         kx 	      gold_assert(object->local_has_got_offset(r_sym, got_type));
     9         kx 	      got_offset = (object->local_got_offset(r_sym, got_type)
     9         kx 			    - target->got_size());
     9         kx 	    }
     9         kx 	  if (optimized_type == tls::TLSOPT_TO_IE)
     9         kx 	    {
     9         kx 	      this->tls_gd_to_ie(relinfo, relnum, rel, r_type,
     9         kx 				 got_offset, view, view_size);
     9         kx 	      break;
     9         kx 	    }
     9         kx 	  else if (optimized_type == tls::TLSOPT_NONE)
     9         kx 	    {
     9         kx 	      // Relocate the field with the offset of the pair of GOT
     9         kx 	      // entries.
     9         kx 	      Relocate_functions<32, false>::rel32(view, got_offset);
     9         kx 	      break;
     9         kx 	    }
     9         kx 	}
     9         kx       gold_error_at_location(relinfo, relnum, rel.get_r_offset(),
     9         kx 			     _("unsupported reloc %u"),
     9         kx 			     r_type);
     9         kx       break;
     9         kx 
     9         kx     case elfcpp::R_386_TLS_GOTDESC:      // Global-dynamic (from ~oliva url)
     9         kx     case elfcpp::R_386_TLS_DESC_CALL:
     9         kx       this->local_dynamic_type_ = LOCAL_DYNAMIC_GNU;
     9         kx       if (optimized_type == tls::TLSOPT_TO_LE)
     9         kx 	{
     9         kx 	  if (tls_segment == NULL)
     9         kx 	    {
     9         kx 	      gold_assert(parameters->errors()->error_count() > 0
     9         kx 			  || issue_undefined_symbol_error(gsym));
     9         kx 	      return;
     9         kx 	    }
     9         kx 	  this->tls_desc_gd_to_le(relinfo, relnum, tls_segment,
     9         kx 				  rel, r_type, value, view,
     9         kx 				  view_size);
     9         kx 	  break;
     9         kx 	}
     9         kx       else
     9         kx 	{
     9         kx 	  unsigned int got_type = (optimized_type == tls::TLSOPT_TO_IE
     9         kx 				   ? GOT_TYPE_TLS_NOFFSET
     9         kx 				   : GOT_TYPE_TLS_DESC);
     9         kx 	  unsigned int got_offset = 0;
     9         kx 	  if (r_type == elfcpp::R_386_TLS_GOTDESC
     9         kx 	      && optimized_type == tls::TLSOPT_NONE)
     9         kx 	    {
     9         kx 	      // We created GOT entries in the .got.tlsdesc portion of
     9         kx 	      // the .got.plt section, but the offset stored in the
     9         kx 	      // symbol is the offset within .got.tlsdesc.
     9         kx 	      got_offset = (target->got_size()
     9         kx 			    + target->got_plt_section()->data_size());
     9         kx 	    }
     9         kx 	  if (gsym != NULL)
     9         kx 	    {
     9         kx 	      gold_assert(gsym->has_got_offset(got_type));
     9         kx 	      got_offset += gsym->got_offset(got_type) - target->got_size();
     9         kx 	    }
     9         kx 	  else
     9         kx 	    {
     9         kx 	      unsigned int r_sym = elfcpp::elf_r_sym<32>(rel.get_r_info());
     9         kx 	      gold_assert(object->local_has_got_offset(r_sym, got_type));
     9         kx 	      got_offset += (object->local_got_offset(r_sym, got_type)
     9         kx 			     - target->got_size());
     9         kx 	    }
     9         kx 	  if (optimized_type == tls::TLSOPT_TO_IE)
     9         kx 	    {
     9         kx 	      this->tls_desc_gd_to_ie(relinfo, relnum, rel, r_type,
     9         kx 				      got_offset, view, view_size);
     9         kx 	      break;
     9         kx 	    }
     9         kx 	  else if (optimized_type == tls::TLSOPT_NONE)
     9         kx 	    {
     9         kx 	      if (r_type == elfcpp::R_386_TLS_GOTDESC)
     9         kx 		{
     9         kx 		  // Relocate the field with the offset of the pair of GOT
     9         kx 		  // entries.
     9         kx 		  Relocate_functions<32, false>::rel32(view, got_offset);
     9         kx 		}
     9         kx 	      break;
     9         kx 	    }
     9         kx 	}
     9         kx       gold_error_at_location(relinfo, relnum, rel.get_r_offset(),
     9         kx 			     _("unsupported reloc %u"),
     9         kx 			     r_type);
     9         kx       break;
     9         kx 
     9         kx     case elfcpp::R_386_TLS_LDM:          // Local-dynamic
     9         kx       if (this->local_dynamic_type_ == LOCAL_DYNAMIC_SUN)
     9         kx 	{
     9         kx 	  gold_error_at_location(relinfo, relnum, rel.get_r_offset(),
     9         kx 				 _("both SUN and GNU model "
     9         kx 				   "TLS relocations"));
     9         kx 	  break;
     9         kx 	}
     9         kx       this->local_dynamic_type_ = LOCAL_DYNAMIC_GNU;
     9         kx       if (optimized_type == tls::TLSOPT_TO_LE)
     9         kx 	{
     9         kx 	  if (tls_segment == NULL)
     9         kx 	    {
     9         kx 	      gold_assert(parameters->errors()->error_count() > 0
     9         kx 			  || issue_undefined_symbol_error(gsym));
     9         kx 	      return;
     9         kx 	    }
     9         kx 	  this->tls_ld_to_le(relinfo, relnum, tls_segment, rel, r_type,
     9         kx 			     value, view, view_size);
     9         kx 	  break;
     9         kx 	}
     9         kx       else if (optimized_type == tls::TLSOPT_NONE)
     9         kx 	{
     9         kx 	  // Relocate the field with the offset of the GOT entry for
     9         kx 	  // the module index.
     9         kx 	  unsigned int got_offset;
     9         kx 	  got_offset = (target->got_mod_index_entry(NULL, NULL, NULL)
     9         kx 			- target->got_size());
     9         kx 	  Relocate_functions<32, false>::rel32(view, got_offset);
     9         kx 	  break;
     9         kx 	}
     9         kx       gold_error_at_location(relinfo, relnum, rel.get_r_offset(),
     9         kx 			     _("unsupported reloc %u"),
     9         kx 			     r_type);
     9         kx       break;
     9         kx 
     9         kx     case elfcpp::R_386_TLS_LDO_32:       // Alternate local-dynamic
     9         kx       if (optimized_type == tls::TLSOPT_TO_LE)
     9         kx 	{
     9         kx 	  // This reloc can appear in debugging sections, in which
     9         kx 	  // case we must not convert to local-exec.  We decide what
     9         kx 	  // to do based on whether the section is marked as
     9         kx 	  // containing executable code.  That is what the GNU linker
     9         kx 	  // does as well.
     9         kx 	  elfcpp::Shdr<32, false> shdr(relinfo->data_shdr);
     9         kx 	  if ((shdr.get_sh_flags() & elfcpp::SHF_EXECINSTR) != 0)
     9         kx 	    {
     9         kx 	      if (tls_segment == NULL)
     9         kx 		{
     9         kx 		  gold_assert(parameters->errors()->error_count() > 0
     9         kx 			      || issue_undefined_symbol_error(gsym));
     9         kx 		  return;
     9         kx 		}
     9         kx 	      value -= tls_segment->memsz();
     9         kx 	    }
     9         kx 	}
     9         kx       Relocate_functions<32, false>::rel32(view, value);
     9         kx       break;
     9         kx 
     9         kx     case elfcpp::R_386_TLS_IE:           // Initial-exec
     9         kx     case elfcpp::R_386_TLS_GOTIE:
     9         kx     case elfcpp::R_386_TLS_IE_32:
     9         kx       if (optimized_type == tls::TLSOPT_TO_LE)
     9         kx 	{
     9         kx 	  if (tls_segment == NULL)
     9         kx 	    {
     9         kx 	      gold_assert(parameters->errors()->error_count() > 0
     9         kx 			  || issue_undefined_symbol_error(gsym));
     9         kx 	      return;
     9         kx 	    }
     9         kx 	  Target_i386::Relocate::tls_ie_to_le(relinfo, relnum, tls_segment,
     9         kx 					      rel, r_type, value, view,
     9         kx 					      view_size);
     9         kx 	  break;
     9         kx 	}
     9         kx       else if (optimized_type == tls::TLSOPT_NONE)
     9         kx 	{
     9         kx 	  // Relocate the field with the offset of the GOT entry for
     9         kx 	  // the tp-relative offset of the symbol.
     9         kx 	  unsigned int got_type = (r_type == elfcpp::R_386_TLS_IE_32
     9         kx 				   ? GOT_TYPE_TLS_OFFSET
     9         kx 				   : GOT_TYPE_TLS_NOFFSET);
     9         kx 	  unsigned int got_offset;
     9         kx 	  if (gsym != NULL)
     9         kx 	    {
     9         kx 	      gold_assert(gsym->has_got_offset(got_type));
     9         kx 	      got_offset = gsym->got_offset(got_type);
     9         kx 	    }
     9         kx 	  else
     9         kx 	    {
     9         kx 	      unsigned int r_sym = elfcpp::elf_r_sym<32>(rel.get_r_info());
     9         kx 	      gold_assert(object->local_has_got_offset(r_sym, got_type));
     9         kx 	      got_offset = object->local_got_offset(r_sym, got_type);
     9         kx 	    }
     9         kx 	  // For the R_386_TLS_IE relocation, we need to apply the
     9         kx 	  // absolute address of the GOT entry.
     9         kx 	  if (r_type == elfcpp::R_386_TLS_IE)
     9         kx 	    got_offset += target->got_plt_section()->address();
     9         kx 	  // All GOT offsets are relative to the end of the GOT.
     9         kx 	  got_offset -= target->got_size();
     9         kx 	  Relocate_functions<32, false>::rel32(view, got_offset);
     9         kx 	  break;
     9         kx 	}
     9         kx       gold_error_at_location(relinfo, relnum, rel.get_r_offset(),
     9         kx 			     _("unsupported reloc %u"),
     9         kx 			     r_type);
     9         kx       break;
     9         kx 
     9         kx     case elfcpp::R_386_TLS_LE:           // Local-exec
     9         kx       // If we're creating a shared library, a dynamic relocation will
     9         kx       // have been created for this location, so do not apply it now.
     9         kx       if (!parameters->options().shared())
     9         kx 	{
     9         kx 	  if (tls_segment == NULL)
     9         kx 	    {
     9         kx 	      gold_assert(parameters->errors()->error_count() > 0
     9         kx 			  || issue_undefined_symbol_error(gsym));
     9         kx 	      return;
     9         kx 	    }
     9         kx 	  value -= tls_segment->memsz();
     9         kx 	  Relocate_functions<32, false>::rel32(view, value);
     9         kx 	}
     9         kx       break;
     9         kx 
     9         kx     case elfcpp::R_386_TLS_LE_32:
     9         kx       // If we're creating a shared library, a dynamic relocation will
     9         kx       // have been created for this location, so do not apply it now.
     9         kx       if (!parameters->options().shared())
     9         kx 	{
     9         kx 	  if (tls_segment == NULL)
     9         kx 	    {
     9         kx 	      gold_assert(parameters->errors()->error_count() > 0
     9         kx 			  || issue_undefined_symbol_error(gsym));
     9         kx 	      return;
     9         kx 	    }
     9         kx 	  value = tls_segment->memsz() - value;
     9         kx 	  Relocate_functions<32, false>::rel32(view, value);
     9         kx 	}
     9         kx       break;
     9         kx     }
     9         kx }
     9         kx 
     9         kx // Do a relocation in which we convert a TLS General-Dynamic to a
     9         kx // Local-Exec.
     9         kx 
     9         kx inline void
     9         kx Target_i386::Relocate::tls_gd_to_le(const Relocate_info<32, false>* relinfo,
     9         kx 				    size_t relnum,
     9         kx 				    Output_segment* tls_segment,
     9         kx 				    const elfcpp::Rel<32, false>& rel,
     9         kx 				    unsigned int,
     9         kx 				    elfcpp::Elf_types<32>::Elf_Addr value,
     9         kx 				    unsigned char* view,
     9         kx 				    section_size_type view_size)
     9         kx {
     9         kx   // leal foo(,%ebx,1),%eax; call ___tls_get_addr@PLT
     9         kx   //  ==> movl %gs:0,%eax; subl $foo@tpoff,%eax
     9         kx   // leal foo(%ebx),%eax; call ___tls_get_addr@PLT
     9         kx   //  ==> movl %gs:0,%eax; subl $foo@tpoff,%eax
     9         kx   // leal foo(%reg),%eax; call *___tls_get_addr@GOT(%reg)
     9         kx   //  ==> movl %gs:0,%eax; subl $foo@tpoff,%eax
     9         kx 
     9         kx   tls::check_range(relinfo, relnum, rel.get_r_offset(), view_size, -2);
     9         kx   tls::check_range(relinfo, relnum, rel.get_r_offset(), view_size, 9);
     9         kx 
     9         kx   unsigned char op1 = view[-1];
     9         kx   unsigned char op2 = view[-2];
     9         kx   unsigned char op3 = view[4];
     9         kx 
     9         kx   tls::check_tls(relinfo, relnum, rel.get_r_offset(),
     9         kx 		 op2 == 0x8d || op2 == 0x04);
     9         kx   tls::check_tls(relinfo, relnum, rel.get_r_offset(),
     9         kx 		 op3 == 0xe8 || op3 == 0xff);
     9         kx 
     9         kx   int roff = 5;
     9         kx 
     9         kx   if (op2 == 0x04)
     9         kx     {
     9         kx       tls::check_range(relinfo, relnum, rel.get_r_offset(), view_size, -3);
     9         kx       tls::check_tls(relinfo, relnum, rel.get_r_offset(), view[-3] == 0x8d);
     9         kx       tls::check_tls(relinfo, relnum, rel.get_r_offset(),
     9         kx 		     ((op1 & 0xc7) == 0x05 && op1 != (4 << 3)));
     9         kx       memcpy(view - 3, "\x65\xa1\0\0\0\0\x81\xe8\0\0\0", 12);
     9         kx     }
     9         kx   else
     9         kx     {
     9         kx       unsigned char reg = op1 & 7;
     9         kx       tls::check_tls(relinfo, relnum, rel.get_r_offset(),
     9         kx 		     ((op1 & 0xf8) == 0x80
     9         kx 		      && reg != 4
     9         kx 		      && reg != 0
     9         kx 		      && (op3 == 0xe8 || (view[5] & 0x7) == reg)));
     9         kx       if (op3 == 0xff
     9         kx 	  || (rel.get_r_offset() + 9 < view_size
     9         kx 	      && view[9] == 0x90))
     9         kx 	{
     9         kx 	  // There is an indirect call or a trailing nop.  Use the size
     9         kx 	  // byte subl.
     9         kx 	  memcpy(view - 2, "\x65\xa1\0\0\0\0\x81\xe8\0\0\0", 12);
     9         kx 	  roff = 6;
     9         kx 	}
     9         kx       else
     9         kx 	{
     9         kx 	  // Use the five byte subl.
     9         kx 	  memcpy(view - 2, "\x65\xa1\0\0\0\0\x2d\0\0\0", 11);
     9         kx 	}
     9         kx     }
     9         kx 
     9         kx   value = tls_segment->memsz() - value;
     9         kx   Relocate_functions<32, false>::rel32(view + roff, value);
     9         kx 
     9         kx   // The next reloc should be a PLT32 reloc against __tls_get_addr.
     9         kx   // We can skip it.
     9         kx   this->skip_call_tls_get_addr_ = true;
     9         kx }
     9         kx 
     9         kx // Do a relocation in which we convert a TLS General-Dynamic to an
     9         kx // Initial-Exec.
     9         kx 
     9         kx inline void
     9         kx Target_i386::Relocate::tls_gd_to_ie(const Relocate_info<32, false>* relinfo,
     9         kx 				    size_t relnum,
     9         kx 				    const elfcpp::Rel<32, false>& rel,
     9         kx 				    unsigned int,
     9         kx 				    elfcpp::Elf_types<32>::Elf_Addr value,
     9         kx 				    unsigned char* view,
     9         kx 				    section_size_type view_size)
     9         kx {
     9         kx   // leal foo(,%ebx,1),%eax; call ___tls_get_addr@PLT
     9         kx   //  ==> movl %gs:0,%eax; addl foo@gotntpoff(%ebx),%eax
     9         kx   // leal foo(%ebx),%eax; call ___tls_get_addr@PLT; nop
     9         kx   //  ==> movl %gs:0,%eax; addl foo@gotntpoff(%ebx),%eax
     9         kx   // leal foo(%reg),%eax; call *___tls_get_addr@GOT(%reg)
     9         kx   //  ==> movl %gs:0,%eax; addl foo@gotntpoff(%reg),%eax
     9         kx 
     9         kx   tls::check_range(relinfo, relnum, rel.get_r_offset(), view_size, -2);
     9         kx   tls::check_range(relinfo, relnum, rel.get_r_offset(), view_size, 9);
     9         kx 
     9         kx   unsigned char op1 = view[-1];
     9         kx   unsigned char op2 = view[-2];
     9         kx   unsigned char op3 = view[4];
     9         kx 
     9         kx   tls::check_tls(relinfo, relnum, rel.get_r_offset(),
     9         kx 		 op2 == 0x8d || op2 == 0x04);
     9         kx   tls::check_tls(relinfo, relnum, rel.get_r_offset(),
     9         kx 		 op3 == 0xe8 || op3 == 0xff);
     9         kx 
     9         kx   int roff;
     9         kx 
     9         kx   if (op2 == 0x04)
     9         kx     {
     9         kx       tls::check_range(relinfo, relnum, rel.get_r_offset(), view_size, -3);
     9         kx       tls::check_tls(relinfo, relnum, rel.get_r_offset(), view[-3] == 0x8d);
     9         kx       tls::check_tls(relinfo, relnum, rel.get_r_offset(),
     9         kx 		     ((op1 & 0xc7) == 0x05 && op1 != (4 << 3)));
     9         kx       roff = 5;
     9         kx     }
     9         kx   else
     9         kx     {
     9         kx       unsigned char reg = op1 & 7;
     9         kx       tls::check_range(relinfo, relnum, rel.get_r_offset(), view_size, 10);
     9         kx       tls::check_tls(relinfo, relnum, rel.get_r_offset(),
     9         kx 		     ((op1 & 0xf8) == 0x80
     9         kx 		      && reg != 4
     9         kx 		      && reg != 0
     9         kx 		      && ((op3 == 0xe8 && view[9] == 0x90)
     9         kx 			   || (view[5] & 0x7) == reg)));
     9         kx       roff = 6;
     9         kx     }
     9         kx 
     9         kx   memcpy(view + roff - 8, "\x65\xa1\0\0\0\0\x03\x83\0\0\0", 12);
     9         kx   Relocate_functions<32, false>::rel32(view + roff, value);
     9         kx 
     9         kx   // The next reloc should be a PLT32 reloc against __tls_get_addr.
     9         kx   // We can skip it.
     9         kx   this->skip_call_tls_get_addr_ = true;
     9         kx }
     9         kx 
     9         kx // Do a relocation in which we convert a TLS_GOTDESC or TLS_DESC_CALL
     9         kx // General-Dynamic to a Local-Exec.
     9         kx 
     9         kx inline void
     9         kx Target_i386::Relocate::tls_desc_gd_to_le(
     9         kx     const Relocate_info<32, false>* relinfo,
     9         kx     size_t relnum,
     9         kx     Output_segment* tls_segment,
     9         kx     const elfcpp::Rel<32, false>& rel,
     9         kx     unsigned int r_type,
     9         kx     elfcpp::Elf_types<32>::Elf_Addr value,
     9         kx     unsigned char* view,
     9         kx     section_size_type view_size)
     9         kx {
     9         kx   if (r_type == elfcpp::R_386_TLS_GOTDESC)
     9         kx     {
     9         kx       // leal foo@TLSDESC(%ebx), %eax
     9         kx       // ==> leal foo@NTPOFF, %eax
     9         kx       tls::check_range(relinfo, relnum, rel.get_r_offset(), view_size, -2);
     9         kx       tls::check_range(relinfo, relnum, rel.get_r_offset(), view_size, 4);
     9         kx       tls::check_tls(relinfo, relnum, rel.get_r_offset(),
     9         kx 		     view[-2] == 0x8d && view[-1] == 0x83);
     9         kx       view[-1] = 0x05;
     9         kx       value -= tls_segment->memsz();
     9         kx       Relocate_functions<32, false>::rel32(view, value);
     9         kx     }
     9         kx   else
     9         kx     {
     9         kx       // call *foo@TLSCALL(%eax)
     9         kx       // ==> nop; nop
     9         kx       gold_assert(r_type == elfcpp::R_386_TLS_DESC_CALL);
     9         kx       tls::check_range(relinfo, relnum, rel.get_r_offset(), view_size, 2);
     9         kx       tls::check_tls(relinfo, relnum, rel.get_r_offset(),
     9         kx 		     view[0] == 0xff && view[1] == 0x10);
     9         kx       view[0] = 0x66;
     9         kx       view[1] = 0x90;
     9         kx     }
     9         kx }
     9         kx 
     9         kx // Do a relocation in which we convert a TLS_GOTDESC or TLS_DESC_CALL
     9         kx // General-Dynamic to an Initial-Exec.
     9         kx 
     9         kx inline void
     9         kx Target_i386::Relocate::tls_desc_gd_to_ie(
     9         kx     const Relocate_info<32, false>* relinfo,
     9         kx     size_t relnum,
     9         kx     const elfcpp::Rel<32, false>& rel,
     9         kx     unsigned int r_type,
     9         kx     elfcpp::Elf_types<32>::Elf_Addr value,
     9         kx     unsigned char* view,
     9         kx     section_size_type view_size)
     9         kx {
     9         kx   if (r_type == elfcpp::R_386_TLS_GOTDESC)
     9         kx     {
     9         kx       // leal foo@TLSDESC(%ebx), %eax
     9         kx       // ==> movl foo@GOTNTPOFF(%ebx), %eax
     9         kx       tls::check_range(relinfo, relnum, rel.get_r_offset(), view_size, -2);
     9         kx       tls::check_range(relinfo, relnum, rel.get_r_offset(), view_size, 4);
     9         kx       tls::check_tls(relinfo, relnum, rel.get_r_offset(),
     9         kx 		     view[-2] == 0x8d && view[-1] == 0x83);
     9         kx       view[-2] = 0x8b;
     9         kx       Relocate_functions<32, false>::rel32(view, value);
     9         kx     }
     9         kx   else
     9         kx     {
     9         kx       // call *foo@TLSCALL(%eax)
     9         kx       // ==> nop; nop
     9         kx       gold_assert(r_type == elfcpp::R_386_TLS_DESC_CALL);
     9         kx       tls::check_range(relinfo, relnum, rel.get_r_offset(), view_size, 2);
     9         kx       tls::check_tls(relinfo, relnum, rel.get_r_offset(),
     9         kx 		     view[0] == 0xff && view[1] == 0x10);
     9         kx       view[0] = 0x66;
     9         kx       view[1] = 0x90;
     9         kx     }
     9         kx }
     9         kx 
     9         kx // Do a relocation in which we convert a TLS Local-Dynamic to a
     9         kx // Local-Exec.
     9         kx 
     9         kx inline void
     9         kx Target_i386::Relocate::tls_ld_to_le(const Relocate_info<32, false>* relinfo,
     9         kx 				    size_t relnum,
     9         kx 				    Output_segment*,
     9         kx 				    const elfcpp::Rel<32, false>& rel,
     9         kx 				    unsigned int,
     9         kx 				    elfcpp::Elf_types<32>::Elf_Addr,
     9         kx 				    unsigned char* view,
     9         kx 				    section_size_type view_size)
     9         kx {
     9         kx   // leal foo(%ebx), %eax; call ___tls_get_addr@PLT
     9         kx   // ==> movl %gs:0,%eax; nop; leal 0(%esi,1),%esi
     9         kx   // leal foo(%reg), %eax; call call *___tls_get_addr@GOT(%reg)
     9         kx   // ==> movl %gs:0,%eax; leal (%esi),%esi
     9         kx 
     9         kx   tls::check_range(relinfo, relnum, rel.get_r_offset(), view_size, -2);
     9         kx 
     9         kx   unsigned char op1 = view[-1];
     9         kx   unsigned char op2 = view[-2];
     9         kx   unsigned char op3 = view[4];
     9         kx 
     9         kx   tls::check_tls(relinfo, relnum, rel.get_r_offset(),
     9         kx 		 op3 == 0xe8 || op3 == 0xff);
     9         kx   tls::check_range(relinfo, relnum, rel.get_r_offset(), view_size,
     9         kx 		   op3 == 0xe8 ? 9 : 10);
     9         kx 
     9         kx   // FIXME: Does this test really always pass?
     9         kx   tls::check_tls(relinfo, relnum, rel.get_r_offset(), op2 == 0x8d);
     9         kx 
     9         kx   unsigned char reg = op1 & 7;
     9         kx   tls::check_tls(relinfo, relnum, rel.get_r_offset(),
     9         kx 		 ((op1 & 0xf8) == 0x80
     9         kx 		  && reg != 4
     9         kx 		  && reg != 0
     9         kx 		  && (op3 == 0xe8 || (view[5] & 0x7) == reg)));
     9         kx 
     9         kx   if (op3 == 0xe8)
     9         kx     memcpy(view - 2, "\x65\xa1\0\0\0\0\x90\x8d\x74\x26\0", 11);
     9         kx   else
     9         kx     memcpy(view - 2, "\x65\xa1\0\0\0\0\x8d\xb6\0\0\0\0", 12);
     9         kx 
     9         kx   // The next reloc should be a PLT32 reloc against __tls_get_addr.
     9         kx   // We can skip it.
     9         kx   this->skip_call_tls_get_addr_ = true;
     9         kx }
     9         kx 
     9         kx // Do a relocation in which we convert a TLS Initial-Exec to a
     9         kx // Local-Exec.
     9         kx 
     9         kx inline void
     9         kx Target_i386::Relocate::tls_ie_to_le(const Relocate_info<32, false>* relinfo,
     9         kx 				    size_t relnum,
     9         kx 				    Output_segment* tls_segment,
     9         kx 				    const elfcpp::Rel<32, false>& rel,
     9         kx 				    unsigned int r_type,
     9         kx 				    elfcpp::Elf_types<32>::Elf_Addr value,
     9         kx 				    unsigned char* view,
     9         kx 				    section_size_type view_size)
     9         kx {
     9         kx   // We have to actually change the instructions, which means that we
     9         kx   // need to examine the opcodes to figure out which instruction we
     9         kx   // are looking at.
     9         kx   if (r_type == elfcpp::R_386_TLS_IE)
     9         kx     {
     9         kx       // movl %gs:XX,%eax  ==>  movl $YY,%eax
     9         kx       // movl %gs:XX,%reg  ==>  movl $YY,%reg
     9         kx       // addl %gs:XX,%reg  ==>  addl $YY,%reg
     9         kx       tls::check_range(relinfo, relnum, rel.get_r_offset(), view_size, -1);
     9         kx       tls::check_range(relinfo, relnum, rel.get_r_offset(), view_size, 4);
     9         kx 
     9         kx       unsigned char op1 = view[-1];
     9         kx       if (op1 == 0xa1)
     9         kx 	{
     9         kx 	  // movl XX,%eax  ==>  movl $YY,%eax
     9         kx 	  view[-1] = 0xb8;
     9         kx 	}
     9         kx       else
     9         kx 	{
     9         kx 	  tls::check_range(relinfo, relnum, rel.get_r_offset(), view_size, -2);
     9         kx 
     9         kx 	  unsigned char op2 = view[-2];
     9         kx 	  if (op2 == 0x8b)
     9         kx 	    {
     9         kx 	      // movl XX,%reg  ==>  movl $YY,%reg
     9         kx 	      tls::check_tls(relinfo, relnum, rel.get_r_offset(),
     9         kx 			     (op1 & 0xc7) == 0x05);
     9         kx 	      view[-2] = 0xc7;
     9         kx 	      view[-1] = 0xc0 | ((op1 >> 3) & 7);
     9         kx 	    }
     9         kx 	  else if (op2 == 0x03)
     9         kx 	    {
     9         kx 	      // addl XX,%reg  ==>  addl $YY,%reg
     9         kx 	      tls::check_tls(relinfo, relnum, rel.get_r_offset(),
     9         kx 			     (op1 & 0xc7) == 0x05);
     9         kx 	      view[-2] = 0x81;
     9         kx 	      view[-1] = 0xc0 | ((op1 >> 3) & 7);
     9         kx 	    }
     9         kx 	  else
     9         kx 	    tls::check_tls(relinfo, relnum, rel.get_r_offset(), 0);
     9         kx 	}
     9         kx     }
     9         kx   else
     9         kx     {
     9         kx       // subl %gs:XX(%reg1),%reg2  ==>  subl $YY,%reg2
     9         kx       // movl %gs:XX(%reg1),%reg2  ==>  movl $YY,%reg2
     9         kx       // addl %gs:XX(%reg1),%reg2  ==>  addl $YY,$reg2
     9         kx       tls::check_range(relinfo, relnum, rel.get_r_offset(), view_size, -2);
     9         kx       tls::check_range(relinfo, relnum, rel.get_r_offset(), view_size, 4);
     9         kx 
     9         kx       unsigned char op1 = view[-1];
     9         kx       unsigned char op2 = view[-2];
     9         kx       tls::check_tls(relinfo, relnum, rel.get_r_offset(),
     9         kx 		     (op1 & 0xc0) == 0x80 && (op1 & 7) != 4);
     9         kx       if (op2 == 0x8b)
     9         kx 	{
     9         kx 	  // movl %gs:XX(%reg1),%reg2  ==>  movl $YY,%reg2
     9         kx 	  view[-2] = 0xc7;
     9         kx 	  view[-1] = 0xc0 | ((op1 >> 3) & 7);
     9         kx 	}
     9         kx       else if (op2 == 0x2b)
     9         kx 	{
     9         kx 	  // subl %gs:XX(%reg1),%reg2  ==>  subl $YY,%reg2
     9         kx 	  view[-2] = 0x81;
     9         kx 	  view[-1] = 0xe8 | ((op1 >> 3) & 7);
     9         kx 	}
     9         kx       else if (op2 == 0x03)
     9         kx 	{
     9         kx 	  // addl %gs:XX(%reg1),%reg2  ==>  addl $YY,$reg2
     9         kx 	  view[-2] = 0x81;
     9         kx 	  view[-1] = 0xc0 | ((op1 >> 3) & 7);
     9         kx 	}
     9         kx       else
     9         kx 	tls::check_tls(relinfo, relnum, rel.get_r_offset(), 0);
     9         kx     }
     9         kx 
     9         kx   value = tls_segment->memsz() - value;
     9         kx   if (r_type == elfcpp::R_386_TLS_IE || r_type == elfcpp::R_386_TLS_GOTIE)
     9         kx     value = - value;
     9         kx 
     9         kx   Relocate_functions<32, false>::rel32(view, value);
     9         kx }
     9         kx 
     9         kx // Relocate section data.
     9         kx 
     9         kx void
     9         kx Target_i386::relocate_section(const Relocate_info<32, false>* relinfo,
     9         kx 			      unsigned int sh_type,
     9         kx 			      const unsigned char* prelocs,
     9         kx 			      size_t reloc_count,
     9         kx 			      Output_section* output_section,
     9         kx 			      bool needs_special_offset_handling,
     9         kx 			      unsigned char* view,
     9         kx 			      elfcpp::Elf_types<32>::Elf_Addr address,
     9         kx 			      section_size_type view_size,
     9         kx 			      const Reloc_symbol_changes* reloc_symbol_changes)
     9         kx {
     9         kx   gold_assert(sh_type == elfcpp::SHT_REL);
     9         kx 
     9         kx   gold::relocate_section<32, false, Target_i386, Relocate,
     9         kx 			 gold::Default_comdat_behavior, Classify_reloc>(
     9         kx     relinfo,
     9         kx     this,
     9         kx     prelocs,
     9         kx     reloc_count,
     9         kx     output_section,
     9         kx     needs_special_offset_handling,
     9         kx     view,
     9         kx     address,
     9         kx     view_size,
     9         kx     reloc_symbol_changes);
     9         kx }
     9         kx 
     9         kx // Return the size of a relocation while scanning during a relocatable
     9         kx // link.
     9         kx 
     9         kx unsigned int
     9         kx Target_i386::Classify_reloc::get_size_for_reloc(
     9         kx     unsigned int r_type,
     9         kx     Relobj* object)
     9         kx {
     9         kx   switch (r_type)
     9         kx     {
     9         kx     case elfcpp::R_386_NONE:
     9         kx     case elfcpp::R_386_GNU_VTINHERIT:
     9         kx     case elfcpp::R_386_GNU_VTENTRY:
     9         kx     case elfcpp::R_386_TLS_GD:            // Global-dynamic
     9         kx     case elfcpp::R_386_TLS_GOTDESC:       // Global-dynamic (from ~oliva url)
     9         kx     case elfcpp::R_386_TLS_DESC_CALL:
     9         kx     case elfcpp::R_386_TLS_LDM:           // Local-dynamic
     9         kx     case elfcpp::R_386_TLS_LDO_32:        // Alternate local-dynamic
     9         kx     case elfcpp::R_386_TLS_IE:            // Initial-exec
     9         kx     case elfcpp::R_386_TLS_IE_32:
     9         kx     case elfcpp::R_386_TLS_GOTIE:
     9         kx     case elfcpp::R_386_TLS_LE:            // Local-exec
     9         kx     case elfcpp::R_386_TLS_LE_32:
     9         kx       return 0;
     9         kx 
     9         kx     case elfcpp::R_386_32:
     9         kx     case elfcpp::R_386_PC32:
     9         kx     case elfcpp::R_386_GOT32:
     9         kx     case elfcpp::R_386_GOT32X:
     9         kx     case elfcpp::R_386_PLT32:
     9         kx     case elfcpp::R_386_GOTOFF:
     9         kx     case elfcpp::R_386_GOTPC:
     9         kx      return 4;
     9         kx 
     9         kx     case elfcpp::R_386_16:
     9         kx     case elfcpp::R_386_PC16:
     9         kx       return 2;
     9         kx 
     9         kx     case elfcpp::R_386_8:
     9         kx     case elfcpp::R_386_PC8:
     9         kx       return 1;
     9         kx 
     9         kx       // These are relocations which should only be seen by the
     9         kx       // dynamic linker, and should never be seen here.
     9         kx     case elfcpp::R_386_COPY:
     9         kx     case elfcpp::R_386_GLOB_DAT:
     9         kx     case elfcpp::R_386_JUMP_SLOT:
     9         kx     case elfcpp::R_386_RELATIVE:
     9         kx     case elfcpp::R_386_IRELATIVE:
     9         kx     case elfcpp::R_386_TLS_TPOFF:
     9         kx     case elfcpp::R_386_TLS_DTPMOD32:
     9         kx     case elfcpp::R_386_TLS_DTPOFF32:
     9         kx     case elfcpp::R_386_TLS_TPOFF32:
     9         kx     case elfcpp::R_386_TLS_DESC:
     9         kx       object->error(_("unexpected reloc %u in object file"), r_type);
     9         kx       return 0;
     9         kx 
     9         kx     case elfcpp::R_386_32PLT:
     9         kx     case elfcpp::R_386_TLS_GD_32:
     9         kx     case elfcpp::R_386_TLS_GD_PUSH:
     9         kx     case elfcpp::R_386_TLS_GD_CALL:
     9         kx     case elfcpp::R_386_TLS_GD_POP:
     9         kx     case elfcpp::R_386_TLS_LDM_32:
     9         kx     case elfcpp::R_386_TLS_LDM_PUSH:
     9         kx     case elfcpp::R_386_TLS_LDM_CALL:
     9         kx     case elfcpp::R_386_TLS_LDM_POP:
     9         kx     case elfcpp::R_386_USED_BY_INTEL_200:
     9         kx     default:
     9         kx       object->error(_("unsupported reloc %u in object file"), r_type);
     9         kx       return 0;
     9         kx     }
     9         kx }
     9         kx 
     9         kx // Scan the relocs during a relocatable link.
     9         kx 
     9         kx void
     9         kx Target_i386::scan_relocatable_relocs(Symbol_table* symtab,
     9         kx 				     Layout* layout,
     9         kx 				     Sized_relobj_file<32, false>* object,
     9         kx 				     unsigned int data_shndx,
     9         kx 				     unsigned int sh_type,
     9         kx 				     const unsigned char* prelocs,
     9         kx 				     size_t reloc_count,
     9         kx 				     Output_section* output_section,
     9         kx 				     bool needs_special_offset_handling,
     9         kx 				     size_t local_symbol_count,
     9         kx 				     const unsigned char* plocal_symbols,
     9         kx 				     Relocatable_relocs* rr)
     9         kx {
     9         kx   typedef gold::Default_scan_relocatable_relocs<Classify_reloc>
     9         kx       Scan_relocatable_relocs;
     9         kx 
     9         kx   gold_assert(sh_type == elfcpp::SHT_REL);
     9         kx 
     9         kx   gold::scan_relocatable_relocs<32, false, Scan_relocatable_relocs>(
     9         kx     symtab,
     9         kx     layout,
     9         kx     object,
     9         kx     data_shndx,
     9         kx     prelocs,
     9         kx     reloc_count,
     9         kx     output_section,
     9         kx     needs_special_offset_handling,
     9         kx     local_symbol_count,
     9         kx     plocal_symbols,
     9         kx     rr);
     9         kx }
     9         kx 
     9         kx // Scan the relocs for --emit-relocs.
     9         kx 
     9         kx void
     9         kx Target_i386::emit_relocs_scan(Symbol_table* symtab,
     9         kx 			      Layout* layout,
     9         kx 			      Sized_relobj_file<32, false>* object,
     9         kx 			      unsigned int data_shndx,
     9         kx 			      unsigned int sh_type,
     9         kx 			      const unsigned char* prelocs,
     9         kx 			      size_t reloc_count,
     9         kx 			      Output_section* output_section,
     9         kx 			      bool needs_special_offset_handling,
     9         kx 			      size_t local_symbol_count,
     9         kx 			      const unsigned char* plocal_syms,
     9         kx 			      Relocatable_relocs* rr)
     9         kx {
     9         kx   typedef gold::Default_classify_reloc<elfcpp::SHT_REL, 32, false>
     9         kx       Classify_reloc;
     9         kx   typedef gold::Default_emit_relocs_strategy<Classify_reloc>
     9         kx       Emit_relocs_strategy;
     9         kx 
     9         kx   gold_assert(sh_type == elfcpp::SHT_REL);
     9         kx 
     9         kx   gold::scan_relocatable_relocs<32, false, Emit_relocs_strategy>(
     9         kx     symtab,
     9         kx     layout,
     9         kx     object,
     9         kx     data_shndx,
     9         kx     prelocs,
     9         kx     reloc_count,
     9         kx     output_section,
     9         kx     needs_special_offset_handling,
     9         kx     local_symbol_count,
     9         kx     plocal_syms,
     9         kx     rr);
     9         kx }
     9         kx 
     9         kx // Emit relocations for a section.
     9         kx 
     9         kx void
     9         kx Target_i386::relocate_relocs(
     9         kx     const Relocate_info<32, false>* relinfo,
     9         kx     unsigned int sh_type,
     9         kx     const unsigned char* prelocs,
     9         kx     size_t reloc_count,
     9         kx     Output_section* output_section,
     9         kx     elfcpp::Elf_types<32>::Elf_Off offset_in_output_section,
     9         kx     unsigned char* view,
     9         kx     elfcpp::Elf_types<32>::Elf_Addr view_address,
     9         kx     section_size_type view_size,
     9         kx     unsigned char* reloc_view,
     9         kx     section_size_type reloc_view_size)
     9         kx {
     9         kx   gold_assert(sh_type == elfcpp::SHT_REL);
     9         kx 
     9         kx   gold::relocate_relocs<32, false, Classify_reloc>(
     9         kx     relinfo,
     9         kx     prelocs,
     9         kx     reloc_count,
     9         kx     output_section,
     9         kx     offset_in_output_section,
     9         kx     view,
     9         kx     view_address,
     9         kx     view_size,
     9         kx     reloc_view,
     9         kx     reloc_view_size);
     9         kx }
     9         kx 
     9         kx // Return the value to use for a dynamic which requires special
     9         kx // treatment.  This is how we support equality comparisons of function
     9         kx // pointers across shared library boundaries, as described in the
     9         kx // processor specific ABI supplement.
     9         kx 
     9         kx uint64_t
     9         kx Target_i386::do_dynsym_value(const Symbol* gsym) const
     9         kx {
     9         kx   gold_assert(gsym->is_from_dynobj() && gsym->has_plt_offset());
     9         kx   return this->plt_address_for_global(gsym);
     9         kx }
     9         kx 
     9         kx // Return a string used to fill a code section with nops to take up
     9         kx // the specified length.
     9         kx 
     9         kx std::string
     9         kx Target_i386::do_code_fill(section_size_type length) const
     9         kx {
     9         kx   if (length >= 16)
     9         kx     {
     9         kx       // Build a jmp instruction to skip over the bytes.
     9         kx       unsigned char jmp[5];
     9         kx       jmp[0] = 0xe9;
     9         kx       elfcpp::Swap_unaligned<32, false>::writeval(jmp + 1, length - 5);
     9         kx       return (std::string(reinterpret_cast<char*>(&jmp[0]), 5)
     9         kx 	      + std::string(length - 5, static_cast<char>(0x90)));
     9         kx     }
     9         kx 
     9         kx   // Nop sequences of various lengths.
     9         kx   const char nop1[1] = { '\x90' };                   // nop
     9         kx   const char nop2[2] = { '\x66', '\x90' };           // xchg %ax %ax
     9         kx   const char nop3[3] = { '\x8d', '\x76', '\x00' };   // leal 0(%esi),%esi
     9         kx   const char nop4[4] = { '\x8d', '\x74', '\x26',     // leal 0(%esi,1),%esi
     9         kx 			 '\x00'};
     9         kx   const char nop5[5] = { '\x90', '\x8d', '\x74',     // nop
     9         kx 			 '\x26', '\x00' };           // leal 0(%esi,1),%esi
     9         kx   const char nop6[6] = { '\x8d', '\xb6', '\x00',     // leal 0L(%esi),%esi
     9         kx 			 '\x00', '\x00', '\x00' };
     9         kx   const char nop7[7] = { '\x8d', '\xb4', '\x26',     // leal 0L(%esi,1),%esi
     9         kx 			 '\x00', '\x00', '\x00',
     9         kx 			 '\x00' };
     9         kx   const char nop8[8] = { '\x90', '\x8d', '\xb4',     // nop
     9         kx 			 '\x26', '\x00', '\x00',     // leal 0L(%esi,1),%esi
     9         kx 			 '\x00', '\x00' };
     9         kx   const char nop9[9] = { '\x89', '\xf6', '\x8d',     // movl %esi,%esi
     9         kx 			 '\xbc', '\x27', '\x00',     // leal 0L(%edi,1),%edi
     9         kx 			 '\x00', '\x00', '\x00' };
     9         kx   const char nop10[10] = { '\x8d', '\x76', '\x00',   // leal 0(%esi),%esi
     9         kx 			   '\x8d', '\xbc', '\x27',   // leal 0L(%edi,1),%edi
     9         kx 			   '\x00', '\x00', '\x00',
     9         kx 			   '\x00' };
     9         kx   const char nop11[11] = { '\x8d', '\x74', '\x26',   // leal 0(%esi,1),%esi
     9         kx 			   '\x00', '\x8d', '\xbc',   // leal 0L(%edi,1),%edi
     9         kx 			   '\x27', '\x00', '\x00',
     9         kx 			   '\x00', '\x00' };
     9         kx   const char nop12[12] = { '\x8d', '\xb6', '\x00',   // leal 0L(%esi),%esi
     9         kx 			   '\x00', '\x00', '\x00',   // leal 0L(%edi),%edi
     9         kx 			   '\x8d', '\xbf', '\x00',
     9         kx 			   '\x00', '\x00', '\x00' };
     9         kx   const char nop13[13] = { '\x8d', '\xb6', '\x00',   // leal 0L(%esi),%esi
     9         kx 			   '\x00', '\x00', '\x00',   // leal 0L(%edi,1),%edi
     9         kx 			   '\x8d', '\xbc', '\x27',
     9         kx 			   '\x00', '\x00', '\x00',
     9         kx 			   '\x00' };
     9         kx   const char nop14[14] = { '\x8d', '\xb4', '\x26',   // leal 0L(%esi,1),%esi
     9         kx 			   '\x00', '\x00', '\x00',   // leal 0L(%edi,1),%edi
     9         kx 			   '\x00', '\x8d', '\xbc',
     9         kx 			   '\x27', '\x00', '\x00',
     9         kx 			   '\x00', '\x00' };
     9         kx   const char nop15[15] = { '\xeb', '\x0d', '\x90',   // jmp .+15
     9         kx 			   '\x90', '\x90', '\x90',   // nop,nop,nop,...
     9         kx 			   '\x90', '\x90', '\x90',
     9         kx 			   '\x90', '\x90', '\x90',
     9         kx 			   '\x90', '\x90', '\x90' };
     9         kx 
     9         kx   const char* nops[16] = {
     9         kx     NULL,
     9         kx     nop1, nop2, nop3, nop4, nop5, nop6, nop7,
     9         kx     nop8, nop9, nop10, nop11, nop12, nop13, nop14, nop15
     9         kx   };
     9         kx 
     9         kx   return std::string(nops[length], length);
     9         kx }
     9         kx 
     9         kx // Return the value to use for the base of a DW_EH_PE_datarel offset
     9         kx // in an FDE.  Solaris and SVR4 use DW_EH_PE_datarel because their
     9         kx // assembler can not write out the difference between two labels in
     9         kx // different sections, so instead of using a pc-relative value they
     9         kx // use an offset from the GOT.
     9         kx 
     9         kx uint64_t
     9         kx Target_i386::do_ehframe_datarel_base() const
     9         kx {
     9         kx   gold_assert(this->global_offset_table_ != NULL);
     9         kx   Symbol* sym = this->global_offset_table_;
     9         kx   Sized_symbol<32>* ssym = static_cast<Sized_symbol<32>*>(sym);
     9         kx   return ssym->value();
     9         kx }
     9         kx 
     9         kx // Return whether SYM should be treated as a call to a non-split
     9         kx // function.  We don't want that to be true of a call to a
     9         kx // get_pc_thunk function.
     9         kx 
     9         kx bool
     9         kx Target_i386::do_is_call_to_non_split(const Symbol* sym,
     9         kx 				     const unsigned char*,
     9         kx 				     const unsigned char*,
     9         kx 				     section_size_type) const
     9         kx {
     9         kx   return (sym->type() == elfcpp::STT_FUNC
     9         kx 	  && !is_prefix_of("__i686.get_pc_thunk.", sym->name()));
     9         kx }
     9         kx 
     9         kx // FNOFFSET in section SHNDX in OBJECT is the start of a function
     9         kx // compiled with -fsplit-stack.  The function calls non-split-stack
     9         kx // code.  We have to change the function so that it always ensures
     9         kx // that it has enough stack space to run some random function.
     9         kx 
     9         kx void
     9         kx Target_i386::do_calls_non_split(Relobj* object, unsigned int shndx,
     9         kx 				       section_offset_type fnoffset,
     9         kx 				       section_size_type fnsize,
     9         kx 				       const unsigned char*,
     9         kx 				       size_t,
     9         kx 				       unsigned char* view,
     9         kx 				       section_size_type view_size,
     9         kx 				       std::string* from,
     9         kx 				       std::string* to) const
     9         kx {
     9         kx   // The function starts with a comparison of the stack pointer and a
     9         kx   // field in the TCB.  This is followed by a jump.
     9         kx 
     9         kx   // cmp %gs:NN,%esp
     9         kx   if (this->match_view(view, view_size, fnoffset, "\x65\x3b\x25", 3)
     9         kx       && fnsize > 7)
     9         kx     {
     9         kx       // We will call __morestack if the carry flag is set after this
     9         kx       // comparison.  We turn the comparison into an stc instruction
     9         kx       // and some nops.
     9         kx       view[fnoffset] = '\xf9';
     9         kx       this->set_view_to_nop(view, view_size, fnoffset + 1, 6);
     9         kx     }
     9         kx   // lea NN(%esp),%ecx
     9         kx   // lea NN(%esp),%edx
     9         kx   else if ((this->match_view(view, view_size, fnoffset, "\x8d\x8c\x24", 3)
     9         kx 	    || this->match_view(view, view_size, fnoffset, "\x8d\x94\x24", 3))
     9         kx 	   && fnsize > 7)
     9         kx     {
     9         kx       // This is loading an offset from the stack pointer for a
     9         kx       // comparison.  The offset is negative, so we decrease the
     9         kx       // offset by the amount of space we need for the stack.  This
     9         kx       // means we will avoid calling __morestack if there happens to
     9         kx       // be plenty of space on the stack already.
     9         kx       unsigned char* pval = view + fnoffset + 3;
     9         kx       uint32_t val = elfcpp::Swap_unaligned<32, false>::readval(pval);
     9         kx       val -= parameters->options().split_stack_adjust_size();
     9         kx       elfcpp::Swap_unaligned<32, false>::writeval(pval, val);
     9         kx     }
     9         kx   else
     9         kx     {
     9         kx       if (!object->has_no_split_stack())
     9         kx 	object->error(_("failed to match split-stack sequence at "
     9         kx 			"section %u offset %0zx"),
     9         kx 		      shndx, static_cast<size_t>(fnoffset));
     9         kx       return;
     9         kx     }
     9         kx 
     9         kx   // We have to change the function so that it calls
     9         kx   // __morestack_non_split instead of __morestack.  The former will
     9         kx   // allocate additional stack space.
     9         kx   *from = "__morestack";
     9         kx   *to = "__morestack_non_split";
     9         kx }
     9         kx 
     9         kx // The selector for i386 object files.  Note this is never instantiated
     9         kx // directly.  It's only used in Target_selector_i386_nacl, below.
     9         kx 
     9         kx class Target_selector_i386 : public Target_selector_freebsd
     9         kx {
     9         kx public:
     9         kx   Target_selector_i386()
     9         kx     : Target_selector_freebsd(elfcpp::EM_386, 32, false,
     9         kx 			      "elf32-i386", "elf32-i386-freebsd",
     9         kx 			      "elf_i386")
     9         kx   { }
     9         kx 
     9         kx   Target*
     9         kx   do_instantiate_target()
     9         kx   { return new Target_i386(); }
     9         kx };
     9         kx 
     9         kx // NaCl variant.  It uses different PLT contents.
     9         kx 
     9         kx class Output_data_plt_i386_nacl : public Output_data_plt_i386
     9         kx {
     9         kx  public:
     9         kx   Output_data_plt_i386_nacl(Layout* layout,
     9         kx 			    Output_data_got_plt_i386* got_plt,
     9         kx 			    Output_data_space* got_irelative)
     9         kx     : Output_data_plt_i386(layout, plt_entry_size, got_plt, got_irelative)
     9         kx   { }
     9         kx 
     9         kx  protected:
     9         kx   virtual unsigned int
     9         kx   do_get_plt_entry_size() const
     9         kx   { return plt_entry_size; }
     9         kx 
     9         kx   virtual void
     9         kx   do_add_eh_frame(Layout* layout)
     9         kx   {
     9         kx     layout->add_eh_frame_for_plt(this, plt_eh_frame_cie, plt_eh_frame_cie_size,
     9         kx 				 plt_eh_frame_fde, plt_eh_frame_fde_size);
     9         kx   }
     9         kx 
     9         kx   // The size of an entry in the PLT.
     9         kx   static const int plt_entry_size = 64;
     9         kx 
     9         kx   // The .eh_frame unwind information for the PLT.
     9         kx   static const int plt_eh_frame_fde_size = 32;
     9         kx   static const unsigned char plt_eh_frame_fde[plt_eh_frame_fde_size];
     9         kx };
     9         kx 
     9         kx class Output_data_plt_i386_nacl_exec : public Output_data_plt_i386_nacl
     9         kx {
     9         kx public:
     9         kx   Output_data_plt_i386_nacl_exec(Layout* layout,
     9         kx 				 Output_data_got_plt_i386* got_plt,
     9         kx 				 Output_data_space* got_irelative)
     9         kx     : Output_data_plt_i386_nacl(layout, got_plt, got_irelative)
     9         kx   { }
     9         kx 
     9         kx  protected:
     9         kx   virtual void
     9         kx   do_fill_first_plt_entry(unsigned char* pov,
     9         kx 			  elfcpp::Elf_types<32>::Elf_Addr got_address);
     9         kx 
     9         kx   virtual unsigned int
     9         kx   do_fill_plt_entry(unsigned char* pov,
     9         kx 		    elfcpp::Elf_types<32>::Elf_Addr got_address,
     9         kx 		    unsigned int got_offset,
     9         kx 		    unsigned int plt_offset,
     9         kx 		    unsigned int plt_rel_offset);
     9         kx 
     9         kx  private:
     9         kx   // The first entry in the PLT for an executable.
     9         kx   static const unsigned char first_plt_entry[plt_entry_size];
     9         kx 
     9         kx   // Other entries in the PLT for an executable.
     9         kx   static const unsigned char plt_entry[plt_entry_size];
     9         kx };
     9         kx 
     9         kx class Output_data_plt_i386_nacl_dyn : public Output_data_plt_i386_nacl
     9         kx {
     9         kx  public:
     9         kx   Output_data_plt_i386_nacl_dyn(Layout* layout,
     9         kx 				Output_data_got_plt_i386* got_plt,
     9         kx 				Output_data_space* got_irelative)
     9         kx     : Output_data_plt_i386_nacl(layout, got_plt, got_irelative)
     9         kx   { }
     9         kx 
     9         kx  protected:
     9         kx   virtual void
     9         kx   do_fill_first_plt_entry(unsigned char* pov, elfcpp::Elf_types<32>::Elf_Addr);
     9         kx 
     9         kx   virtual unsigned int
     9         kx   do_fill_plt_entry(unsigned char* pov,
     9         kx 		    elfcpp::Elf_types<32>::Elf_Addr,
     9         kx 		    unsigned int got_offset,
     9         kx 		    unsigned int plt_offset,
     9         kx 		    unsigned int plt_rel_offset);
     9         kx 
     9         kx  private:
     9         kx   // The first entry in the PLT for a shared object.
     9         kx   static const unsigned char first_plt_entry[plt_entry_size];
     9         kx 
     9         kx   // Other entries in the PLT for a shared object.
     9         kx   static const unsigned char plt_entry[plt_entry_size];
     9         kx };
     9         kx 
     9         kx class Target_i386_nacl : public Target_i386
     9         kx {
     9         kx  public:
     9         kx   Target_i386_nacl()
     9         kx     : Target_i386(&i386_nacl_info)
     9         kx   { }
     9         kx 
     9         kx  protected:
     9         kx   virtual Output_data_plt_i386*
     9         kx   do_make_data_plt(Layout* layout,
     9         kx 		   Output_data_got_plt_i386* got_plt,
     9         kx 		   Output_data_space* got_irelative,
     9         kx 		   bool dyn)
     9         kx   {
     9         kx     if (dyn)
     9         kx       return new Output_data_plt_i386_nacl_dyn(layout, got_plt, got_irelative);
     9         kx     else
     9         kx       return new Output_data_plt_i386_nacl_exec(layout, got_plt, got_irelative);
     9         kx   }
     9         kx 
     9         kx   virtual std::string
     9         kx   do_code_fill(section_size_type length) const;
     9         kx 
     9         kx  private:
     9         kx   static const Target::Target_info i386_nacl_info;
     9         kx };
     9         kx 
     9         kx const Target::Target_info Target_i386_nacl::i386_nacl_info =
     9         kx {
     9         kx   32,			// size
     9         kx   false,		// is_big_endian
     9         kx   elfcpp::EM_386,	// machine_code
     9         kx   false,		// has_make_symbol
     9         kx   false,		// has_resolve
     9         kx   true,			// has_code_fill
     9         kx   true,			// is_default_stack_executable
     9         kx   true,			// can_icf_inline_merge_sections
     9         kx   '\0',			// wrap_char
     9         kx   "/lib/ld-nacl-x86-32.so.1", // dynamic_linker
     9         kx   0x20000,		// default_text_segment_address
     9         kx   0x10000,		// abi_pagesize (overridable by -z max-page-size)
     9         kx   0x10000,		// common_pagesize (overridable by -z common-page-size)
     9         kx   true,                 // isolate_execinstr
     9         kx   0x10000000,           // rosegment_gap
     9         kx   elfcpp::SHN_UNDEF,	// small_common_shndx
     9         kx   elfcpp::SHN_UNDEF,	// large_common_shndx
     9         kx   0,			// small_common_section_flags
     9         kx   0,			// large_common_section_flags
     9         kx   NULL,			// attributes_section
     9         kx   NULL,			// attributes_vendor
     9         kx   "_start",		// entry_symbol_name
     9         kx   32,			// hash_entry_size
     9         kx   elfcpp::SHT_PROGBITS,	// unwind_section_type
     9         kx };
     9         kx 
     9         kx #define	NACLMASK	0xe0            // 32-byte alignment mask
     9         kx 
     9         kx const unsigned char
     9         kx Output_data_plt_i386_nacl_exec::first_plt_entry[plt_entry_size] =
     9         kx {
     9         kx   0xff, 0x35,                          // pushl contents of memory address
     9         kx   0, 0, 0, 0,                          // replaced with address of .got + 4
     9         kx   0x8b, 0x0d,                          // movl contents of address, %ecx
     9         kx   0, 0, 0, 0,                          // replaced with address of .got + 8
     9         kx   0x83, 0xe1, NACLMASK,                // andl $NACLMASK, %ecx
     9         kx   0xff, 0xe1,                          // jmp *%ecx
     9         kx   0x90, 0x90, 0x90, 0x90, 0x90, 0x90,  // nops
     9         kx   0x90, 0x90, 0x90, 0x90, 0x90, 0x90,  // nops
     9         kx   0x90, 0x90, 0x90, 0x90, 0x90, 0x90,  // nops
     9         kx   0x90, 0x90, 0x90, 0x90, 0x90, 0x90,  // nops
     9         kx   0x90, 0x90, 0x90, 0x90, 0x90, 0x90,  // nops
     9         kx   0x90, 0x90, 0x90, 0x90, 0x90, 0x90,  // nops
     9         kx   0x90, 0x90, 0x90, 0x90, 0x90, 0x90,  // nops
     9         kx   0x90, 0x90, 0x90, 0x90, 0x90
     9         kx };
     9         kx 
     9         kx void
     9         kx Output_data_plt_i386_nacl_exec::do_fill_first_plt_entry(
     9         kx     unsigned char* pov,
     9         kx     elfcpp::Elf_types<32>::Elf_Addr got_address)
     9         kx {
     9         kx   memcpy(pov, first_plt_entry, plt_entry_size);
     9         kx   elfcpp::Swap_unaligned<32, false>::writeval(pov + 2, got_address + 4);
     9         kx   elfcpp::Swap<32, false>::writeval(pov + 8, got_address + 8);
     9         kx }
     9         kx 
     9         kx // The first entry in the PLT for a shared object.
     9         kx 
     9         kx const unsigned char
     9         kx Output_data_plt_i386_nacl_dyn::first_plt_entry[plt_entry_size] =
     9         kx {
     9         kx   0xff, 0xb3, 4, 0, 0, 0,	// pushl 4(%ebx)
     9         kx   0x8b, 0x4b, 0x08,		// mov 0x8(%ebx), %ecx
     9         kx   0x83, 0xe1, NACLMASK,         // andl $NACLMASK, %ecx
     9         kx   0xff, 0xe1,                   // jmp *%ecx
     9         kx   0x90, 0x90, 0x90, 0x90, 0x90,  // nops
     9         kx   0x90, 0x90, 0x90, 0x90, 0x90,  // nops
     9         kx   0x90, 0x90, 0x90, 0x90, 0x90,  // nops
     9         kx   0x90, 0x90, 0x90, 0x90, 0x90,  // nops
     9         kx   0x90, 0x90, 0x90, 0x90, 0x90,  // nops
     9         kx   0x90, 0x90, 0x90, 0x90, 0x90,  // nops
     9         kx   0x90, 0x90, 0x90, 0x90, 0x90,  // nops
     9         kx   0x90, 0x90, 0x90, 0x90, 0x90,  // nops
     9         kx   0x90, 0x90, 0x90, 0x90, 0x90,  // nops
     9         kx   0x90, 0x90, 0x90, 0x90, 0x90   // nops
     9         kx };
     9         kx 
     9         kx void
     9         kx Output_data_plt_i386_nacl_dyn::do_fill_first_plt_entry(
     9         kx     unsigned char* pov,
     9         kx     elfcpp::Elf_types<32>::Elf_Addr)
     9         kx {
     9         kx   memcpy(pov, first_plt_entry, plt_entry_size);
     9         kx }
     9         kx 
     9         kx // Subsequent entries in the PLT for an executable.
     9         kx 
     9         kx const unsigned char
     9         kx Output_data_plt_i386_nacl_exec::plt_entry[plt_entry_size] =
     9         kx {
     9         kx   0x8b, 0x0d,                    // movl contents of address, %ecx */
     9         kx   0, 0, 0, 0,                    // replaced with address of symbol in .got
     9         kx   0x83, 0xe1, NACLMASK,          // andl $NACLMASK, %ecx
     9         kx   0xff, 0xe1,                    // jmp *%ecx
     9         kx 
     9         kx   // Pad to the next 32-byte boundary with nop instructions.
     9         kx   0x90,
     9         kx   0x90, 0x90, 0x90, 0x90, 0x90, 0x90, 0x90, 0x90, 0x90, 0x90,
     9         kx   0x90, 0x90, 0x90, 0x90, 0x90, 0x90, 0x90, 0x90, 0x90, 0x90,
     9         kx 
     9         kx   // Lazy GOT entries point here (32-byte aligned).
     9         kx   0x68,                       // pushl immediate
     9         kx   0, 0, 0, 0,                 // replaced with offset into relocation table
     9         kx   0xe9,                       // jmp relative
     9         kx   0, 0, 0, 0,                 // replaced with offset to start of .plt
     9         kx 
     9         kx   // Pad to the next 32-byte boundary with nop instructions.
     9         kx   0x90, 0x90, 0x90, 0x90, 0x90, 0x90, 0x90, 0x90, 0x90, 0x90,
     9         kx   0x90, 0x90, 0x90, 0x90, 0x90, 0x90, 0x90, 0x90, 0x90, 0x90,
     9         kx   0x90, 0x90
     9         kx };
     9         kx 
     9         kx unsigned int
     9         kx Output_data_plt_i386_nacl_exec::do_fill_plt_entry(
     9         kx     unsigned char* pov,
     9         kx     elfcpp::Elf_types<32>::Elf_Addr got_address,
     9         kx     unsigned int got_offset,
     9         kx     unsigned int plt_offset,
     9         kx     unsigned int plt_rel_offset)
     9         kx {
     9         kx   memcpy(pov, plt_entry, plt_entry_size);
     9         kx   elfcpp::Swap_unaligned<32, false>::writeval(pov + 2,
     9         kx 					      got_address + got_offset);
     9         kx   elfcpp::Swap_unaligned<32, false>::writeval(pov + 33, plt_rel_offset);
     9         kx   elfcpp::Swap<32, false>::writeval(pov + 38, - (plt_offset + 38 + 4));
     9         kx   return 32;
     9         kx }
     9         kx 
     9         kx // Subsequent entries in the PLT for a shared object.
     9         kx 
     9         kx const unsigned char
     9         kx Output_data_plt_i386_nacl_dyn::plt_entry[plt_entry_size] =
     9         kx {
     9         kx   0x8b, 0x8b,          // movl offset(%ebx), %ecx
     9         kx   0, 0, 0, 0,          // replaced with offset of symbol in .got
     9         kx   0x83, 0xe1, 0xe0,    // andl $NACLMASK, %ecx
     9         kx   0xff, 0xe1,          // jmp *%ecx
     9         kx 
     9         kx   // Pad to the next 32-byte boundary with nop instructions.
     9         kx   0x90,
     9         kx   0x90, 0x90, 0x90, 0x90, 0x90, 0x90, 0x90, 0x90, 0x90, 0x90,
     9         kx   0x90, 0x90, 0x90, 0x90, 0x90, 0x90, 0x90, 0x90, 0x90, 0x90,
     9         kx 
     9         kx   // Lazy GOT entries point here (32-byte aligned).
     9         kx   0x68,                // pushl immediate
     9         kx   0, 0, 0, 0,          // replaced with offset into relocation table.
     9         kx   0xe9,                // jmp relative
     9         kx   0, 0, 0, 0,          // replaced with offset to start of .plt.
     9         kx 
     9         kx   // Pad to the next 32-byte boundary with nop instructions.
     9         kx   0x90, 0x90, 0x90, 0x90, 0x90, 0x90, 0x90, 0x90, 0x90, 0x90,
     9         kx   0x90, 0x90, 0x90, 0x90, 0x90, 0x90, 0x90, 0x90, 0x90, 0x90,
     9         kx   0x90, 0x90
     9         kx };
     9         kx 
     9         kx unsigned int
     9         kx Output_data_plt_i386_nacl_dyn::do_fill_plt_entry(
     9         kx     unsigned char* pov,
     9         kx     elfcpp::Elf_types<32>::Elf_Addr,
     9         kx     unsigned int got_offset,
     9         kx     unsigned int plt_offset,
     9         kx     unsigned int plt_rel_offset)
     9         kx {
     9         kx   memcpy(pov, plt_entry, plt_entry_size);
     9         kx   elfcpp::Swap_unaligned<32, false>::writeval(pov + 2, got_offset);
     9         kx   elfcpp::Swap_unaligned<32, false>::writeval(pov + 33, plt_rel_offset);
     9         kx   elfcpp::Swap<32, false>::writeval(pov + 38, - (plt_offset + 38 + 4));
     9         kx   return 32;
     9         kx }
     9         kx 
     9         kx const unsigned char
     9         kx Output_data_plt_i386_nacl::plt_eh_frame_fde[plt_eh_frame_fde_size] =
     9         kx {
     9         kx   0, 0, 0, 0,				// Replaced with offset to .plt.
     9         kx   0, 0, 0, 0,				// Replaced with size of .plt.
     9         kx   0,					// Augmentation size.
     9         kx   elfcpp::DW_CFA_def_cfa_offset, 8,	// DW_CFA_def_cfa_offset: 8.
     9         kx   elfcpp::DW_CFA_advance_loc + 6,	// Advance 6 to __PLT__ + 6.
     9         kx   elfcpp::DW_CFA_def_cfa_offset, 12,	// DW_CFA_def_cfa_offset: 12.
     9         kx   elfcpp::DW_CFA_advance_loc + 58,	// Advance 58 to __PLT__ + 64.
     9         kx   elfcpp::DW_CFA_def_cfa_expression,	// DW_CFA_def_cfa_expression.
     9         kx   13,					// Block length.
     9         kx   elfcpp::DW_OP_breg4, 4,		// Push %esp + 4.
     9         kx   elfcpp::DW_OP_breg8, 0,		// Push %eip.
     9         kx   elfcpp::DW_OP_const1u, 63,            // Push 0x3f.
     9         kx   elfcpp::DW_OP_and,			// & (%eip & 0x3f).
     9         kx   elfcpp::DW_OP_const1u, 37,            // Push 0x25.
     9         kx   elfcpp::DW_OP_ge,			// >= ((%eip & 0x3f) >= 0x25)
     9         kx   elfcpp::DW_OP_lit2,			// Push 2.
     9         kx   elfcpp::DW_OP_shl,			// << (((%eip & 0x3f) >= 0x25) << 2)
     9         kx   elfcpp::DW_OP_plus,			// + ((((%eip&0x3f)>=0x25)<<2)+%esp+4
     9         kx   elfcpp::DW_CFA_nop,			// Align to 32 bytes.
     9         kx   elfcpp::DW_CFA_nop
     9         kx };
     9         kx 
     9         kx // Return a string used to fill a code section with nops.
     9         kx // For NaCl, long NOPs are only valid if they do not cross
     9         kx // bundle alignment boundaries, so keep it simple with one-byte NOPs.
     9         kx std::string
     9         kx Target_i386_nacl::do_code_fill(section_size_type length) const
     9         kx {
     9         kx   return std::string(length, static_cast<char>(0x90));
     9         kx }
     9         kx 
     9         kx // The selector for i386-nacl object files.
     9         kx 
     9         kx class Target_selector_i386_nacl
     9         kx   : public Target_selector_nacl<Target_selector_i386, Target_i386_nacl>
     9         kx {
     9         kx  public:
     9         kx   Target_selector_i386_nacl()
     9         kx     : Target_selector_nacl<Target_selector_i386,
     9         kx 			   Target_i386_nacl>("x86-32",
     9         kx 					     "elf32-i386-nacl",
     9         kx 					     "elf_i386_nacl")
     9         kx   { }
     9         kx };
     9         kx 
     9         kx Target_selector_i386_nacl target_selector_i386;
     9         kx 
     9         kx // IAMCU variant.  It uses EM_IAMCU, not EM_386.
     9         kx 
     9         kx class Target_iamcu : public Target_i386
     9         kx {
     9         kx  public:
     9         kx   Target_iamcu()
     9         kx     : Target_i386(&iamcu_info)
     9         kx   { }
     9         kx 
     9         kx  private:
     9         kx   // Information about this specific target which we pass to the
     9         kx   // general Target structure.
     9         kx   static const Target::Target_info iamcu_info;
     9         kx };
     9         kx 
     9         kx const Target::Target_info Target_iamcu::iamcu_info =
     9         kx {
     9         kx   32,			// size
     9         kx   false,		// is_big_endian
     9         kx   elfcpp::EM_IAMCU,	// machine_code
     9         kx   false,		// has_make_symbol
     9         kx   false,		// has_resolve
     9         kx   true,			// has_code_fill
     9         kx   true,			// is_default_stack_executable
     9         kx   true,			// can_icf_inline_merge_sections
     9         kx   '\0',			// wrap_char
     9         kx   "/usr/lib/libc.so.1",	// dynamic_linker
     9         kx   0x08048000,		// default_text_segment_address
     9         kx   0x1000,		// abi_pagesize (overridable by -z max-page-size)
     9         kx   0x1000,		// common_pagesize (overridable by -z common-page-size)
     9         kx   false,                // isolate_execinstr
     9         kx   0,                    // rosegment_gap
     9         kx   elfcpp::SHN_UNDEF,	// small_common_shndx
     9         kx   elfcpp::SHN_UNDEF,	// large_common_shndx
     9         kx   0,			// small_common_section_flags
     9         kx   0,			// large_common_section_flags
     9         kx   NULL,			// attributes_section
     9         kx   NULL,			// attributes_vendor
     9         kx   "_start",		// entry_symbol_name
     9         kx   32,			// hash_entry_size
     9         kx   elfcpp::SHT_PROGBITS,	// unwind_section_type
     9         kx };
     9         kx 
     9         kx class Target_selector_iamcu : public Target_selector
     9         kx {
     9         kx public:
     9         kx   Target_selector_iamcu()
     9         kx     : Target_selector(elfcpp::EM_IAMCU, 32, false, "elf32-iamcu",
     9         kx 		      "elf_iamcu")
     9         kx   { }
     9         kx 
     9         kx   Target*
     9         kx   do_instantiate_target()
     9         kx   { return new Target_iamcu(); }
     9         kx };
     9         kx 
     9         kx Target_selector_iamcu target_selector_iamcu;
     9         kx 
     9         kx } // End anonymous namespace.